Gauss code |
O1O2O3O4U1U2O5O6U5U4U3U6 |
R3 orbit |
{'O1O2O3O4U1U2O5O6U5U4U3U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U2U1U6O5O6U3U4 |
Gauss code of K* |
O1O2O3O4U5U6U3U2O5O6U1U4 |
Gauss code of -K* |
O1O2O3O4U1U4O5O6U3U2U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 1 1 -1 3],[ 3 0 1 3 2 0 2],[ 1 -1 0 2 1 0 2],[-1 -3 -2 0 0 0 3],[-1 -2 -1 0 0 0 2],[ 1 0 0 0 0 0 1],[-3 -2 -2 -3 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 1 1 -1 -1 -3],[-3 0 -2 -3 -1 -2 -2],[-1 2 0 0 0 -1 -2],[-1 3 0 0 0 -2 -3],[ 1 1 0 0 0 0 0],[ 1 2 1 2 0 0 -1],[ 3 2 2 3 0 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,1,1,3,2,3,1,2,2,0,0,1,2,0,2,3,0,0,1] |
Phi over symmetry |
[-3,-1,-1,1,1,3,-1,0,2,3,4,0,0,2,1,1,2,2,0,1,2] |
Phi of -K |
[-3,-1,-1,1,1,3,1,2,1,2,4,0,0,1,2,2,2,3,0,-1,0] |
Phi of K* |
[-3,-1,-1,1,1,3,-1,0,2,3,4,0,0,2,1,1,2,2,0,1,2] |
Phi of -K* |
[-3,-1,-1,1,1,3,0,1,2,3,2,0,0,0,1,1,2,2,0,2,3] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
6z^2+23z+23 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+8w^3z^2-2w^3z+25w^2z+23w |
Inner characteristic polynomial |
t^6+41t^4+22t^2+1 |
Outer characteristic polynomial |
t^7+63t^5+86t^3+9t |
Flat arrow polynomial |
4*K1**2*K2 - 2*K1**2 - 4*K1*K2 - 2*K1*K3 + 2*K1 - 2*K2**2 + 2*K3 + K4 + 2 |
2-strand cable arrow polynomial |
-320*K1**4 + 384*K1**3*K2*K3 - 512*K1**3*K3 + 1536*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 - 3824*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 + 32*K1**2*K2*K4**2 - 1184*K1**2*K2*K4 + 4720*K1**2*K2 - 416*K1**2*K3**2 - 32*K1**2*K3*K5 - 224*K1**2*K4**2 - 4660*K1**2 - 640*K1*K2**4*K3 + 1088*K1*K2**3*K3 + 864*K1*K2**2*K3*K4 - 1312*K1*K2**2*K3 - 64*K1*K2**2*K5 + 32*K1*K2*K3*K4**2 - 320*K1*K2*K3*K4 + 5552*K1*K2*K3 - 192*K1*K2*K4*K5 + 2256*K1*K3*K4 + 432*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**4*K4**2 + 704*K2**4*K4 - 1880*K2**4 + 32*K2**3*K3*K5 + 32*K2**3*K4*K6 - 1216*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 1136*K2**2*K4**2 - 32*K2**2*K4*K8 + 2152*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 - 2688*K2**2 - 128*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 736*K2*K3*K5 + 480*K2*K4*K6 + 16*K2*K5*K7 + 8*K2*K6*K8 - 32*K3**4 - 64*K3**2*K4**2 + 24*K3**2*K6 - 2168*K3**2 + 48*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1360*K4**2 - 272*K5**2 - 32*K6**2 - 4*K7**2 - 2*K8**2 + 3760 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}]] |
If K is slice |
False |