Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.849

Min(phi) over symmetries of the knot is: [-3,0,0,1,1,1,1,2,1,1,3,1,1,1,1,1,2,1,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.849']
Arrow polynomial of the knot is: -2*K1*K2 + K1 + K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.1', '4.3', '6.59', '6.66', '6.112', '6.215', '6.297', '6.306', '6.346', '6.351', '6.352', '6.353', '6.368', '6.393', '6.398', '6.402', '6.420', '6.422', '6.524', '6.529', '6.630', '6.632', '6.633', '6.642', '6.684', '6.707', '6.708', '6.717', '6.719', '6.721', '6.722', '6.737', '6.793', '6.835', '6.837', '6.847', '6.849', '6.857', '6.858', '6.883', '6.902', '6.913', '6.1084', '6.1092', '6.1097', '6.1136', '6.1146', '6.1155', '6.1159', '6.1374', '7.349', '7.365', '7.690', '7.2260', '7.2269', '7.2612', '7.2624', '7.2972', '7.2975', '7.4214', '7.4542', '7.4546', '7.9686', '7.9695', '7.9947', '7.10639', '7.10643', '7.10829', '7.10833', '7.13433', '7.15124', '7.15128', '7.15638', '7.15647', '7.15703', '7.15845', '7.16115', '7.16120', '7.16150', '7.19418', '7.19470', '7.19474', '7.19871', '7.20310', '7.20362', '7.20421', '7.20424', '7.23942', '7.24011', '7.24100', '7.24114', '7.24116', '7.24445', '7.26258', '7.26318', '7.26811', '7.26827', '7.27967', '7.28040', '7.28124', '7.28138', '7.29092', '7.29107', '7.29452', '7.29853', '7.30091', '7.30098', '7.30140', '7.30193', '7.30339', '7.30350', '7.30354']
Outer characteristic polynomial of the knot is: t^7+40t^5+66t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.849']
2-strand cable arrow polynomial of the knot is: -1088*K1**4 + 384*K1**3*K2*K3 - 32*K1**3*K3 - 1952*K1**2*K2**2 - 384*K1**2*K2*K4 + 2752*K1**2*K2 - 1952*K1**2*K3**2 - 2992*K1**2 + 64*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 448*K1*K2**2*K3 - 64*K1*K2**2*K5 - 64*K1*K2*K3*K4 - 160*K1*K2*K3*K6 + 5496*K1*K2*K3 + 2904*K1*K3*K4 + 24*K1*K4*K5 + 40*K1*K5*K6 - 32*K2**4 - 384*K2**2*K3**2 - 232*K2**2*K4**2 + 688*K2**2*K4 - 2678*K2**2 - 160*K2*K3**2*K4 + 328*K2*K3*K5 + 272*K2*K4*K6 + 40*K3**2*K6 - 2456*K3**2 - 1108*K4**2 - 56*K5**2 - 58*K6**2 + 3146
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.849']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10151', 'vk6.10222', 'vk6.10365', 'vk6.10438', 'vk6.16679', 'vk6.19075', 'vk6.19122', 'vk6.19265', 'vk6.19559', 'vk6.22995', 'vk6.23112', 'vk6.25700', 'vk6.25747', 'vk6.26080', 'vk6.26456', 'vk6.29934', 'vk6.29995', 'vk6.30091', 'vk6.34988', 'vk6.35111', 'vk6.37798', 'vk6.37858', 'vk6.42561', 'vk6.44670', 'vk6.51635', 'vk6.51738', 'vk6.54901', 'vk6.56596', 'vk6.59326', 'vk6.64868', 'vk6.66184', 'vk6.66215']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U3O5O6U4U6U5U2
R3 orbit {'O1O2O3O4U1U3O5O6U4U6U5U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U3U5U6U1O6O5U2U4
Gauss code of K* O1O2O3O4U5U4U6U1O5O6U3U2
Gauss code of -K* O1O2O3O4U3U2O5O6U4U5U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 1 0 0 1 1],[ 3 0 3 1 2 1 1],[-1 -3 0 -1 -1 1 1],[ 0 -1 1 0 1 1 1],[ 0 -2 1 -1 0 2 1],[-1 -1 -1 -1 -2 0 0],[-1 -1 -1 -1 -1 0 0]]
Primitive based matrix [[ 0 1 1 1 0 0 -3],[-1 0 1 1 -1 -1 -3],[-1 -1 0 0 -1 -1 -1],[-1 -1 0 0 -1 -2 -1],[ 0 1 1 1 0 1 -1],[ 0 1 1 2 -1 0 -2],[ 3 3 1 1 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,0,3,-1,-1,1,1,3,0,1,1,1,1,2,1,-1,1,2]
Phi over symmetry [-3,0,0,1,1,1,1,2,1,1,3,1,1,1,1,1,2,1,0,-1,-1]
Phi of -K [-3,0,0,1,1,1,1,2,1,3,3,1,0,-1,0,0,0,0,-1,-1,0]
Phi of K* [-1,-1,-1,0,0,3,-1,0,-1,0,3,1,0,0,1,0,0,3,-1,1,2]
Phi of -K* [-3,0,0,1,1,1,1,2,1,1,3,1,1,1,1,1,2,1,0,-1,-1]
Symmetry type of based matrix c
u-polynomial t^3-3t
Normalized Jones-Krushkal polynomial 7z^2+28z+29
Enhanced Jones-Krushkal polynomial 7w^3z^2+28w^2z+29w
Inner characteristic polynomial t^6+28t^4+20t^2+1
Outer characteristic polynomial t^7+40t^5+66t^3+8t
Flat arrow polynomial -2*K1*K2 + K1 + K3 + 1
2-strand cable arrow polynomial -1088*K1**4 + 384*K1**3*K2*K3 - 32*K1**3*K3 - 1952*K1**2*K2**2 - 384*K1**2*K2*K4 + 2752*K1**2*K2 - 1952*K1**2*K3**2 - 2992*K1**2 + 64*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 448*K1*K2**2*K3 - 64*K1*K2**2*K5 - 64*K1*K2*K3*K4 - 160*K1*K2*K3*K6 + 5496*K1*K2*K3 + 2904*K1*K3*K4 + 24*K1*K4*K5 + 40*K1*K5*K6 - 32*K2**4 - 384*K2**2*K3**2 - 232*K2**2*K4**2 + 688*K2**2*K4 - 2678*K2**2 - 160*K2*K3**2*K4 + 328*K2*K3*K5 + 272*K2*K4*K6 + 40*K3**2*K6 - 2456*K3**2 - 1108*K4**2 - 56*K5**2 - 58*K6**2 + 3146
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}]]
If K is slice False
Contact