Gauss code |
O1O2O3O4U1U5O6O5U3U6U4U2 |
R3 orbit |
{'O1O2O3O4U1U5O6O5U3U6U4U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U1U5U2O6O5U6U4 |
Gauss code of K* |
O1O2O3O4U5U4U1U3O5O6U2U6 |
Gauss code of -K* |
O1O2O3O4U5U3O5O6U2U4U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 1 -1 2 1 0],[ 3 0 3 1 2 3 1],[-1 -3 0 -2 1 0 0],[ 1 -1 2 0 2 1 0],[-2 -2 -1 -2 0 -1 -1],[-1 -3 0 -1 1 0 0],[ 0 -1 0 0 1 0 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 0 0 -1 -3],[-1 1 0 0 0 -2 -3],[ 0 1 0 0 0 0 -1],[ 1 2 1 2 0 0 -1],[ 3 2 3 3 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,1,1,1,2,2,0,0,1,3,0,2,3,0,1,1] |
Phi over symmetry |
[-3,-1,0,1,1,2,1,1,3,3,2,0,1,2,2,0,0,1,0,1,1] |
Phi of -K |
[-3,-1,0,1,1,2,1,2,1,1,3,1,0,1,1,1,1,1,0,0,0] |
Phi of K* |
[-2,-1,-1,0,1,3,0,0,1,1,3,0,1,0,1,1,1,1,1,2,1] |
Phi of -K* |
[-3,-1,0,1,1,2,1,1,3,3,2,0,1,2,2,0,0,1,0,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
3z^2+24z+37 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+24w^2z+37w |
Inner characteristic polynomial |
t^6+36t^4+39t^2+4 |
Outer characteristic polynomial |
t^7+52t^5+60t^3+8t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 12*K1**2 - 10*K1*K2 - 2*K1*K3 - K1 - 2*K2**2 + 5*K2 + 3*K3 + K4 + 7 |
2-strand cable arrow polynomial |
-128*K1**6 + 1984*K1**4*K2 - 5024*K1**4 - 256*K1**3*K2**2*K3 - 128*K1**3*K2*K3*K4 + 1088*K1**3*K2*K3 + 224*K1**3*K3*K4 - 1440*K1**3*K3 + 32*K1**3*K4*K5 - 128*K1**2*K2**4 + 640*K1**2*K2**3 + 512*K1**2*K2**2*K4 - 7200*K1**2*K2**2 + 448*K1**2*K2*K3**2 + 128*K1**2*K2*K4**2 - 1024*K1**2*K2*K4 + 12728*K1**2*K2 - 1664*K1**2*K3**2 - 512*K1**2*K4**2 - 64*K1**2*K5**2 - 8056*K1**2 + 704*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 2592*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 448*K1*K2**2*K5 + 64*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 1152*K1*K2*K3*K4 + 11504*K1*K2*K3 + 3144*K1*K3*K4 + 752*K1*K4*K5 + 56*K1*K5*K6 - 64*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 160*K2**4*K4 - 1056*K2**4 + 64*K2**3*K3*K5 + 32*K2**3*K4*K6 - 96*K2**3*K6 + 64*K2**2*K3**2*K4 - 1024*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 376*K2**2*K4**2 + 2960*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 7650*K2**2 - 64*K2*K3**2*K4 - 96*K2*K3*K4*K5 + 1304*K2*K3*K5 - 32*K2*K4**2*K6 + 320*K2*K4*K6 + 48*K2*K5*K7 + 8*K2*K6*K8 - 64*K3**4 - 48*K3**2*K4**2 + 72*K3**2*K6 - 4080*K3**2 + 64*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1742*K4**2 - 504*K5**2 - 126*K6**2 - 24*K7**2 - 2*K8**2 + 7670 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {5}, {1, 4}, {2, 3}]] |
If K is slice |
False |