Gauss code |
O1O2O3O4U1U5O6O5U4U2U6U3 |
R3 orbit |
{'O1O2O3O4U1U5O6O5U4U2U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2U5U3U1O6O5U6U4 |
Gauss code of K* |
O1O2O3O4U5U2U4U1O5O6U3U6 |
Gauss code of -K* |
O1O2O3O4U5U2O5O6U4U1U3U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 2 0 1 1],[ 3 0 2 3 1 3 2],[ 1 -2 0 2 0 1 1],[-2 -3 -2 0 -1 -1 0],[ 0 -1 0 1 0 0 0],[-1 -3 -1 1 0 0 1],[-1 -2 -1 0 0 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 0 -1 -1 -2 -3],[-1 0 0 -1 0 -1 -2],[-1 1 1 0 0 -1 -3],[ 0 1 0 0 0 0 -1],[ 1 2 1 1 0 0 -2],[ 3 3 2 3 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,0,1,1,2,3,1,0,1,2,0,1,3,0,1,2] |
Phi over symmetry |
[-3,-1,0,1,1,2,0,2,1,2,2,1,1,1,1,1,1,1,-1,0,1] |
Phi of -K |
[-3,-1,0,1,1,2,0,2,1,2,2,1,1,1,1,1,1,1,-1,0,1] |
Phi of K* |
[-2,-1,-1,0,1,3,0,1,1,1,2,1,1,1,1,1,1,2,1,2,0] |
Phi of -K* |
[-3,-1,0,1,1,2,2,1,2,3,3,0,1,1,2,0,0,1,-1,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
3z^2+22z+33 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+22w^2z+33w |
Inner characteristic polynomial |
t^6+36t^4+19t^2 |
Outer characteristic polynomial |
t^7+52t^5+40t^3+5t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K1*K3 - 2*K2**2 + 3*K2 + 2*K3 + K4 + 5 |
2-strand cable arrow polynomial |
-64*K1**6 + 864*K1**4*K2 - 2720*K1**4 + 224*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1568*K1**3*K3 + 32*K1**3*K4*K5 - 128*K1**2*K2**4 + 192*K1**2*K2**3 + 160*K1**2*K2**2*K4 - 2816*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 64*K1**2*K2*K4**2 - 448*K1**2*K2*K4 + 7992*K1**2*K2 - 1344*K1**2*K3**2 - 256*K1**2*K3*K5 - 400*K1**2*K4**2 - 96*K1**2*K4*K6 - 32*K1**2*K5**2 - 6076*K1**2 + 448*K1*K2**3*K3 - 608*K1*K2**2*K3 - 64*K1*K2**2*K5 + 64*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 864*K1*K2*K3*K4 + 6768*K1*K2*K3 - 64*K1*K3**2*K5 - 32*K1*K3*K4*K6 + 2456*K1*K3*K4 + 888*K1*K4*K5 + 56*K1*K5*K6 + 8*K1*K6*K7 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 96*K2**4*K4 - 416*K2**4 + 32*K2**3*K3*K5 + 32*K2**3*K4*K6 + 64*K2**2*K3**2*K4 - 672*K2**2*K3**2 + 32*K2**2*K4**3 - 248*K2**2*K4**2 + 1080*K2**2*K4 - 8*K2**2*K6**2 - 4392*K2**2 - 32*K2*K3*K4*K5 + 888*K2*K3*K5 - 32*K2*K4**2*K6 + 184*K2*K4*K6 + 8*K2*K5*K7 + 8*K2*K6*K8 - 64*K3**4 - 48*K3**2*K4**2 + 56*K3**2*K6 - 2648*K3**2 + 48*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1146*K4**2 - 412*K5**2 - 56*K6**2 - 16*K7**2 - 2*K8**2 + 4930 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{4, 6}, {2, 5}, {1, 3}], [{6}, {2, 5}, {4}, {1, 3}]] |
If K is slice |
False |