Gauss code |
O1O2O3O4U1U5O6O5U4U6U2U3 |
R3 orbit |
{'O1O2O3O4U1U5O6O5U4U6U2U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2U3U5U1O6O5U6U4 |
Gauss code of K* |
O1O2O3O4U5U3U4U1O5O6U2U6 |
Gauss code of -K* |
O1O2O3O4U5U3O5O6U4U1U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 0 2 0 1 0],[ 3 0 2 3 1 3 1],[ 0 -2 0 1 -1 1 0],[-2 -3 -1 0 -1 -1 0],[ 0 -1 1 1 0 0 0],[-1 -3 -1 1 0 0 0],[ 0 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 0 -3],[-2 0 -1 0 -1 -1 -3],[-1 1 0 0 0 -1 -3],[ 0 0 0 0 0 0 -1],[ 0 1 0 0 0 1 -1],[ 0 1 1 0 -1 0 -2],[ 3 3 3 1 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,0,3,1,0,1,1,3,0,0,1,3,0,0,1,-1,1,2] |
Phi over symmetry |
[-3,0,0,0,1,2,1,1,2,3,3,0,0,0,0,1,0,1,1,1,1] |
Phi of -K |
[-3,0,0,0,1,2,1,2,2,1,2,0,1,0,1,0,1,2,1,1,0] |
Phi of K* |
[-2,-1,0,0,0,3,0,1,1,2,2,0,1,1,1,-1,0,1,0,2,2] |
Phi of -K* |
[-3,0,0,0,1,2,1,1,2,3,3,0,0,0,0,1,0,1,1,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
Inner characteristic polynomial |
t^6+29t^4+37t^2+4 |
Outer characteristic polynomial |
t^7+43t^5+62t^3+11t |
Flat arrow polynomial |
8*K1**3 + 8*K1**2*K2 - 14*K1**2 - 6*K1*K2 - 4*K1*K3 - 3*K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial |
256*K1**4*K2**3 - 1280*K1**4*K2**2 + 2176*K1**4*K2 - 3584*K1**4 - 256*K1**3*K2**2*K3 + 512*K1**3*K2*K3 + 32*K1**3*K3*K4 - 608*K1**3*K3 - 384*K1**2*K2**4 - 256*K1**2*K2**3*K4 + 2656*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 - 256*K1**2*K2**2*K4**2 + 672*K1**2*K2**2*K4 - 10064*K1**2*K2**2 + 64*K1**2*K2*K3**2 + 192*K1**2*K2*K4**2 - 1536*K1**2*K2*K4 + 11464*K1**2*K2 - 448*K1**2*K3**2 - 32*K1**2*K3*K5 - 336*K1**2*K4**2 - 6868*K1**2 - 128*K1*K2**3*K3*K4 + 1632*K1*K2**3*K3 + 1024*K1*K2**2*K3*K4 - 1696*K1*K2**2*K3 + 384*K1*K2**2*K4*K5 - 512*K1*K2**2*K5 + 32*K1*K2*K3*K4**2 - 1152*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 9288*K1*K2*K3 - 160*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 2096*K1*K3*K4 + 416*K1*K4*K5 - 64*K2**6 - 64*K2**4*K3**2 - 64*K2**4*K4**2 + 544*K2**4*K4 - 2568*K2**4 + 192*K2**3*K3*K5 + 128*K2**3*K4*K6 - 64*K2**3*K6 - 1296*K2**2*K3**2 - 1032*K2**2*K4**2 + 2888*K2**2*K4 - 176*K2**2*K5**2 - 48*K2**2*K6**2 - 4542*K2**2 + 856*K2*K3*K5 + 312*K2*K4*K6 + 8*K2*K5*K7 - 2532*K3**2 - 1230*K4**2 - 136*K5**2 - 26*K6**2 + 5764 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {5}, {2, 4}, {3}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |