Gauss code |
O1O2O3O4U2U1O5O6U5U6U3U4 |
R3 orbit |
{'O1O2O3O4U2U1O5O6U5U6U3U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U2U5U6O5O6U4U3 |
Gauss code of K* |
O1O2O3O4U5U6U3U4O6O5U1U2 |
Gauss code of -K* |
O1O2O3O4U3U4O5O6U1U2U6U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -2 1 3 -1 1],[ 2 0 0 2 3 0 0],[ 2 0 0 1 2 0 0],[-1 -2 -1 0 1 -1 1],[-3 -3 -2 -1 0 -1 1],[ 1 0 0 1 1 0 1],[-1 0 0 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 1 1 -1 -2 -2],[-3 0 1 -1 -1 -2 -3],[-1 -1 0 -1 -1 0 0],[-1 1 1 0 -1 -1 -2],[ 1 1 1 1 0 0 0],[ 2 2 0 1 0 0 0],[ 2 3 0 2 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,1,2,2,-1,1,1,2,3,1,1,0,0,1,1,2,0,0,0] |
Phi over symmetry |
[-3,-1,-1,1,2,2,-1,1,1,2,3,1,1,0,0,1,1,2,0,0,0] |
Phi of -K |
[-2,-2,-1,1,1,3,0,1,1,3,2,1,2,3,3,1,1,3,-1,1,3] |
Phi of K* |
[-3,-1,-1,1,2,2,1,3,3,2,3,1,1,1,2,1,3,3,1,1,0] |
Phi of -K* |
[-2,-2,-1,1,1,3,0,0,0,1,2,0,0,2,3,1,1,1,-1,-1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+2t^2-t |
Normalized Jones-Krushkal polynomial |
7z^2+24z+21 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+11w^3z^2+24w^2z+21w |
Inner characteristic polynomial |
t^6+24t^4+24t^2+1 |
Outer characteristic polynomial |
t^7+44t^5+58t^3+13t |
Flat arrow polynomial |
4*K1**2*K2 - 4*K1**2 - 2*K1*K2 - 4*K1*K3 + K1 + 2*K2 + K3 + K4 + 2 |
2-strand cable arrow polynomial |
-1024*K1**4*K2**2 + 1024*K1**4*K2 - 1792*K1**4 - 256*K1**3*K2**2*K3 + 2432*K1**3*K2*K3 - 896*K1**3*K3 - 1280*K1**2*K2**4 + 2048*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 + 384*K1**2*K2**2*K4 - 7856*K1**2*K2**2 - 1056*K1**2*K2*K4 + 5632*K1**2*K2 - 1216*K1**2*K3**2 - 64*K1**2*K3*K5 - 2028*K1**2 + 256*K1*K2**5*K3 - 256*K1*K2**3*K3*K4 + 3936*K1*K2**3*K3 + 480*K1*K2**2*K3*K4 - 1568*K1*K2**2*K3 + 96*K1*K2**2*K4*K5 - 1056*K1*K2**2*K5 - 512*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 6128*K1*K2*K3 - 64*K1*K2*K4*K5 - 32*K1*K2*K5*K6 + 1056*K1*K3*K4 + 128*K1*K4*K5 + 16*K1*K5*K6 + 8*K1*K6*K7 - 128*K2**6 - 256*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 2368*K2**4 + 320*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 1920*K2**2*K3**2 - 264*K2**2*K4**2 + 1616*K2**2*K4 - 144*K2**2*K5**2 - 48*K2**2*K6**2 - 742*K2**2 + 976*K2*K3*K5 + 152*K2*K4*K6 + 32*K2*K5*K7 + 16*K2*K6*K8 + 8*K3**2*K6 - 1216*K3**2 - 288*K4**2 - 112*K5**2 - 26*K6**2 - 4*K7**2 - 2*K8**2 + 1920 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {3}, {1, 2}]] |
If K is slice |
False |