Gauss code |
O1O2O3O4U2U3O5O6U5U6U1U4 |
R3 orbit |
{'O1O2O3O4U2U3O5O6U5U6U1U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U4U5U6O5O6U2U3 |
Gauss code of K* |
O1O2O3O4U3U5U6U4O5O6U1U2 |
Gauss code of -K* |
O1O2O3O4U3U4O5O6U1U5U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -2 0 3 -1 1],[ 1 0 -1 1 3 -1 1],[ 2 1 0 1 2 0 0],[ 0 -1 -1 0 1 0 0],[-3 -3 -2 -1 0 -1 1],[ 1 1 0 0 1 0 1],[-1 -1 0 0 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 1 0 -1 -1 -2],[-3 0 1 -1 -1 -3 -2],[-1 -1 0 0 -1 -1 0],[ 0 1 0 0 0 -1 -1],[ 1 1 1 0 0 1 0],[ 1 3 1 1 -1 0 -1],[ 2 2 0 1 0 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,1,1,2,-1,1,1,3,2,0,1,1,0,0,1,1,-1,0,1] |
Phi over symmetry |
[-3,-1,0,1,1,2,-1,1,1,3,2,0,1,1,0,0,1,1,-1,0,1] |
Phi of -K |
[-2,-1,-1,0,1,3,0,1,1,3,3,1,0,1,1,1,1,3,1,2,3] |
Phi of K* |
[-3,-1,0,1,1,2,3,2,1,3,3,1,1,1,3,0,1,1,-1,0,1] |
Phi of -K* |
[-2,-1,-1,0,1,3,0,1,1,0,2,1,0,1,1,1,1,3,0,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+t^2+t |
Normalized Jones-Krushkal polynomial |
3z^2+16z+21 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+5w^3z^2-6w^3z+22w^2z+21w |
Inner characteristic polynomial |
t^6+22t^4+31t^2 |
Outer characteristic polynomial |
t^7+38t^5+62t^3+7t |
Flat arrow polynomial |
-8*K1**4 + 8*K1**3 + 8*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial |
1024*K1**4*K2**3 - 2560*K1**4*K2**2 + 2816*K1**4*K2 - 3776*K1**4 - 128*K1**3*K2**2*K3 + 768*K1**3*K2*K3 + 128*K1**3*K3*K4 - 320*K1**3*K3 + 1152*K1**2*K2**5 - 5248*K1**2*K2**4 - 256*K1**2*K2**3*K4 + 6720*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 11504*K1**2*K2**2 - 640*K1**2*K2*K4 + 7680*K1**2*K2 - 512*K1**2*K3**2 - 32*K1**2*K3*K5 - 128*K1**2*K4**2 - 1764*K1**2 + 256*K1*K2**5*K3 - 640*K1*K2**4*K3 - 256*K1*K2**4*K5 + 4032*K1*K2**3*K3 + 288*K1*K2**2*K3*K4 - 2112*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 416*K1*K2**2*K5 - 256*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 6352*K1*K2*K3 + 656*K1*K3*K4 + 120*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 1600*K2**6 - 128*K2**5*K6 - 192*K2**4*K3**2 - 64*K2**4*K4**2 + 1408*K2**4*K4 - 3760*K2**4 + 256*K2**3*K3*K5 + 64*K2**3*K4*K6 - 96*K2**3*K6 - 1232*K2**2*K3**2 - 32*K2**2*K3*K7 - 408*K2**2*K4**2 + 2320*K2**2*K4 - 48*K2**2*K5**2 - 8*K2**2*K6**2 + 46*K2**2 - 32*K2*K3**2*K4 + 472*K2*K3*K5 + 144*K2*K4*K6 + 8*K2*K5*K7 - 824*K3**2 - 306*K4**2 - 44*K5**2 - 6*K6**2 + 2264 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {1, 3}, {2}]] |
If K is slice |
False |