Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.898

Min(phi) over symmetries of the knot is: [-2,-2,-1,1,2,2,-1,0,1,2,3,0,1,0,2,0,1,1,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.898']
Arrow polynomial of the knot is: -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.235', '6.379', '6.411', '6.547', '6.811', '6.818', '6.823', '6.897', '6.898', '6.1008', '6.1053', '6.1109', '6.1110', '6.1130', '6.1222', '6.1239', '6.1303', '6.1307', '6.1342', '6.1491', '6.1495', '6.1496', '6.1519', '6.1592', '6.1593', '6.1642', '6.1652', '6.1653', '6.1671', '6.1673', '6.1717']
Outer characteristic polynomial of the knot is: t^7+41t^5+53t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.898']
2-strand cable arrow polynomial of the knot is: 64*K1**4*K2 - 1344*K1**4 - 896*K1**3*K3 - 1120*K1**2*K2**2 - 128*K1**2*K2*K4 + 5120*K1**2*K2 - 1088*K1**2*K3**2 - 4792*K1**2 + 64*K1*K2*K3**3 - 128*K1*K2*K3*K4 + 5024*K1*K2*K3 - 64*K1*K3**2*K5 + 1312*K1*K3*K4 + 96*K1*K4*K5 - 64*K2**4 - 320*K2**2*K3**2 - 16*K2**2*K4**2 + 448*K2**2*K4 - 3716*K2**2 + 720*K2*K3*K5 + 32*K2*K4*K6 - 192*K3**4 + 256*K3**2*K6 - 2296*K3**2 - 592*K4**2 - 288*K5**2 - 84*K6**2 + 3990
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.898']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3566', 'vk6.3588', 'vk6.3813', 'vk6.3846', 'vk6.6975', 'vk6.7008', 'vk6.7197', 'vk6.7229', 'vk6.15345', 'vk6.15470', 'vk6.33984', 'vk6.34034', 'vk6.34440', 'vk6.48212', 'vk6.48374', 'vk6.49945', 'vk6.49966', 'vk6.54010', 'vk6.54058', 'vk6.54504']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is -.
The reverse -K is
The mirror image K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U4O5O6U5U1U6U3
R3 orbit {'O1O2O3O4U2U4O5O6U5U1U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2U5U4U6O5O6U1U3
Gauss code of K* O1O2O3O4U2U5U4U6O5O6U1U3
Gauss code of -K* Same
Diagrammatic symmetry type -
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 2 1 -1 2],[ 2 0 -1 3 1 0 2],[ 2 1 0 2 1 0 0],[-2 -3 -2 0 0 -1 1],[-1 -1 -1 0 0 0 0],[ 1 0 0 1 0 0 1],[-2 -2 0 -1 0 -1 0]]
Primitive based matrix [[ 0 2 2 1 -1 -2 -2],[-2 0 1 0 -1 -2 -3],[-2 -1 0 0 -1 0 -2],[-1 0 0 0 0 -1 -1],[ 1 1 1 0 0 0 0],[ 2 2 0 1 0 0 1],[ 2 3 2 1 0 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,1,2,2,-1,0,1,2,3,0,1,0,2,0,1,1,0,0,-1]
Phi over symmetry [-2,-2,-1,1,2,2,-1,0,1,2,3,0,1,0,2,0,1,1,0,0,-1]
Phi of -K [-2,-2,-1,1,2,2,-1,1,2,2,4,1,2,1,2,2,2,2,1,1,-1]
Phi of K* [-2,-2,-1,1,2,2,-1,1,2,2,4,1,2,1,2,2,2,2,1,1,-1]
Phi of -K* [-2,-2,-1,1,2,2,-1,0,1,2,3,0,1,0,2,0,1,1,0,0,-1]
Symmetry type of based matrix -
u-polynomial 0
Normalized Jones-Krushkal polynomial 17z+35
Enhanced Jones-Krushkal polynomial 17w^2z+35w
Inner characteristic polynomial t^6+23t^4+27t^2+1
Outer characteristic polynomial t^7+41t^5+53t^3+5t
Flat arrow polynomial -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
2-strand cable arrow polynomial 64*K1**4*K2 - 1344*K1**4 - 896*K1**3*K3 - 1120*K1**2*K2**2 - 128*K1**2*K2*K4 + 5120*K1**2*K2 - 1088*K1**2*K3**2 - 4792*K1**2 + 64*K1*K2*K3**3 - 128*K1*K2*K3*K4 + 5024*K1*K2*K3 - 64*K1*K3**2*K5 + 1312*K1*K3*K4 + 96*K1*K4*K5 - 64*K2**4 - 320*K2**2*K3**2 - 16*K2**2*K4**2 + 448*K2**2*K4 - 3716*K2**2 + 720*K2*K3*K5 + 32*K2*K4*K6 - 192*K3**4 + 256*K3**2*K6 - 2296*K3**2 - 592*K4**2 - 288*K5**2 - 84*K6**2 + 3990
Genus of based matrix 0
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}]]
If K is slice True
Contact