Min(phi) over symmetries of the knot is: [0] |
Flat knots (up to 7 crossings) with same phi are :['6.129', '6.899', '6.1258', '7.13893', '7.14277', '7.20990', '7.25000', '7.25725', '7.28256', '7.28266', '7.31466', '7.36145', '7.36268', '7.44910', '7.45069', '7.45098', '7.45148', '7.45357', '7.45690', '7.45856', '7.46147', '7.46161'] |
Arrow polynomial of the knot is: -8*K1**2 - 8*K1*K2 + 4*K1 + 4*K2 + 4*K3 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.899', '6.912', '6.1806'] |
Outer characteristic polynomial of the knot is: t^2 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.129', '6.899', '6.1258', '7.13893', '7.14277', '7.20990', '7.25000', '7.25725', '7.28256', '7.28266', '7.31466', '7.36145', '7.36268', '7.44910', '7.45069', '7.45098', '7.45148', '7.45357', '7.45690', '7.45856', '7.46147', '7.46161'] |
2-strand cable arrow polynomial of the knot is: -768*K1**6 - 640*K1**4*K2**2 + 1088*K1**4*K2 - 2496*K1**4 + 448*K1**3*K2*K3 - 2816*K1**2*K2**2 + 3360*K1**2*K2 - 1600*K1**2*K3**2 - 768*K1**2*K4**2 + 3328*K1*K2*K3 + 1472*K1*K3*K4 + 512*K1*K4*K5 - 672*K2**4 - 1024*K2**2*K3**2 - 512*K2**2*K4**2 + 704*K2**2*K4 - 672*K2**2 + 608*K2*K3*K5 + 320*K2*K4*K6 - 592*K3**2 - 312*K4**2 - 112*K5**2 - 32*K6**2 + 1174 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.899'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17', 'vk6.26', 'vk6.37', 'vk6.145', 'vk6.158', 'vk6.160', 'vk6.175', 'vk6.1202', 'vk6.1205', 'vk6.1296', 'vk6.1306', 'vk6.1313', 'vk6.2357', 'vk6.2394', 'vk6.2395', 'vk6.2958', 'vk6.3536', 'vk6.3537', 'vk6.6912', 'vk6.6913', 'vk6.6944', 'vk6.6945', 'vk6.15377', 'vk6.15390', 'vk6.15496', 'vk6.33449', 'vk6.33453', 'vk6.33504', 'vk6.33508', 'vk6.33610', 'vk6.49926', 'vk6.53755'] |
The R3 orbit of minmal crossing diagrams contains:
|
The diagrammatic symmetry type of this knot is c.
|
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click
here
to check the fillings
|