Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.902

Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,0,2,3,3,2,1,2,2,2,-1,0,0,1,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.902']
Arrow polynomial of the knot is: -2*K1*K2 + K1 + K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.1', '4.3', '6.59', '6.66', '6.112', '6.215', '6.297', '6.306', '6.346', '6.351', '6.352', '6.353', '6.368', '6.393', '6.398', '6.402', '6.420', '6.422', '6.524', '6.529', '6.630', '6.632', '6.633', '6.642', '6.684', '6.707', '6.708', '6.717', '6.719', '6.721', '6.722', '6.737', '6.793', '6.835', '6.837', '6.847', '6.849', '6.857', '6.858', '6.883', '6.902', '6.913', '6.1084', '6.1092', '6.1097', '6.1136', '6.1146', '6.1155', '6.1159', '6.1374', '7.349', '7.365', '7.690', '7.2260', '7.2269', '7.2612', '7.2624', '7.2972', '7.2975', '7.4214', '7.4542', '7.4546', '7.9686', '7.9695', '7.9947', '7.10639', '7.10643', '7.10829', '7.10833', '7.13433', '7.15124', '7.15128', '7.15638', '7.15647', '7.15703', '7.15845', '7.16115', '7.16120', '7.16150', '7.19418', '7.19470', '7.19474', '7.19871', '7.20310', '7.20362', '7.20421', '7.20424', '7.23942', '7.24011', '7.24100', '7.24114', '7.24116', '7.24445', '7.26258', '7.26318', '7.26811', '7.26827', '7.27967', '7.28040', '7.28124', '7.28138', '7.29092', '7.29107', '7.29452', '7.29853', '7.30091', '7.30098', '7.30140', '7.30193', '7.30339', '7.30350', '7.30354']
Outer characteristic polynomial of the knot is: t^7+66t^5+67t^3+16t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.902']
2-strand cable arrow polynomial of the knot is: 768*K1**2*K2**3 + 320*K1**2*K2**2*K4 - 3712*K1**2*K2**2 - 704*K1**2*K2*K4 + 3968*K1**2*K2 - 256*K1**2*K4**2 - 3592*K1**2 + 576*K1*K2**3*K3 - 864*K1*K2**2*K3 - 544*K1*K2**2*K5 - 608*K1*K2*K3*K4 + 4672*K1*K2*K3 + 912*K1*K3*K4 + 576*K1*K4*K5 - 928*K2**4 - 512*K2**2*K3**2 - 72*K2**2*K4**2 + 1688*K2**2*K4 - 2750*K2**2 + 688*K2*K3*K5 + 40*K2*K4*K6 - 1424*K3**2 - 780*K4**2 - 264*K5**2 - 2*K6**2 + 2802
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.902']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16366', 'vk6.16407', 'vk6.18112', 'vk6.18450', 'vk6.22698', 'vk6.22797', 'vk6.24565', 'vk6.24984', 'vk6.34669', 'vk6.34751', 'vk6.36702', 'vk6.37126', 'vk6.42326', 'vk6.42371', 'vk6.43978', 'vk6.44294', 'vk6.54631', 'vk6.54658', 'vk6.55924', 'vk6.56218', 'vk6.59112', 'vk6.59182', 'vk6.60454', 'vk6.60817', 'vk6.64662', 'vk6.64709', 'vk6.65572', 'vk6.65884', 'vk6.68008', 'vk6.68035', 'vk6.68652', 'vk6.68867']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U5O6O5U1U4U3U6
R3 orbit {'O1O2O3O4U2U5O6O5U1U4U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U2U1U4O6O5U6U3
Gauss code of K* O1O2O3O4U1U5U3U2O5O6U4U6
Gauss code of -K* O1O2O3O4U5U1O5O6U3U2U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 1 1 1 2],[ 3 0 0 3 2 3 2],[ 2 0 0 2 1 2 2],[-1 -3 -2 0 0 -1 1],[-1 -2 -1 0 0 -1 0],[-1 -3 -2 1 1 0 2],[-2 -2 -2 -1 0 -2 0]]
Primitive based matrix [[ 0 2 1 1 1 -2 -3],[-2 0 0 -1 -2 -2 -2],[-1 0 0 0 -1 -1 -2],[-1 1 0 0 -1 -2 -3],[-1 2 1 1 0 -2 -3],[ 2 2 1 2 2 0 0],[ 3 2 2 3 3 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,-1,2,3,0,1,2,2,2,0,1,1,2,1,2,3,2,3,0]
Phi over symmetry [-3,-2,1,1,1,2,0,2,3,3,2,1,2,2,2,-1,0,0,1,2,1]
Phi of -K [-3,-2,1,1,1,2,1,1,1,2,3,1,1,2,2,-1,-1,-1,0,0,1]
Phi of K* [-2,-1,-1,-1,2,3,-1,0,1,2,3,1,1,1,1,0,1,1,2,2,1]
Phi of -K* [-3,-2,1,1,1,2,0,2,3,3,2,1,2,2,2,-1,0,0,1,2,1]
Symmetry type of based matrix c
u-polynomial t^3-3t
Normalized Jones-Krushkal polynomial 6z^2+19z+15
Enhanced Jones-Krushkal polynomial -2w^4z^2+8w^3z^2-8w^3z+27w^2z+15w
Inner characteristic polynomial t^6+46t^4+27t^2+1
Outer characteristic polynomial t^7+66t^5+67t^3+16t
Flat arrow polynomial -2*K1*K2 + K1 + K3 + 1
2-strand cable arrow polynomial 768*K1**2*K2**3 + 320*K1**2*K2**2*K4 - 3712*K1**2*K2**2 - 704*K1**2*K2*K4 + 3968*K1**2*K2 - 256*K1**2*K4**2 - 3592*K1**2 + 576*K1*K2**3*K3 - 864*K1*K2**2*K3 - 544*K1*K2**2*K5 - 608*K1*K2*K3*K4 + 4672*K1*K2*K3 + 912*K1*K3*K4 + 576*K1*K4*K5 - 928*K2**4 - 512*K2**2*K3**2 - 72*K2**2*K4**2 + 1688*K2**2*K4 - 2750*K2**2 + 688*K2*K3*K5 + 40*K2*K4*K6 - 1424*K3**2 - 780*K4**2 - 264*K5**2 - 2*K6**2 + 2802
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}]]
If K is slice False
Contact