Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.91

Min(phi) over symmetries of the knot is: [-4,-2,0,1,2,3,0,3,2,4,3,2,1,2,2,0,1,2,0,1,2]
Flat knots (up to 7 crossings) with same phi are :['6.91']
Arrow polynomial of the knot is: 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 6*K1*K2 - 2*K1*K3 + 2*K2 + 2*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.91', '6.202', '6.210']
Outer characteristic polynomial of the knot is: t^7+91t^5+62t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.91']
2-strand cable arrow polynomial of the knot is: -64*K1**4 + 128*K1**3*K2*K3 - 192*K1**3*K3 - 128*K1**2*K2**4 + 576*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 2592*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 256*K1**2*K2*K4 + 2488*K1**2*K2 - 272*K1**2*K3**2 - 32*K1**2*K3*K5 - 1992*K1**2 + 1504*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 928*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 128*K1*K2**2*K5 + 64*K1*K2*K3**3 - 288*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 3176*K1*K2*K3 + 440*K1*K3*K4 + 40*K1*K4*K5 - 32*K2**6 - 256*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 1464*K2**4 + 128*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 + 64*K2**2*K3**2*K4 - 1088*K2**2*K3**2 - 32*K2**2*K3*K7 - 232*K2**2*K4**2 + 1120*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 872*K2**2 + 464*K2*K3*K5 + 72*K2*K4*K6 + 8*K2*K5*K7 - 16*K3**4 + 8*K3**2*K6 - 880*K3**2 - 228*K4**2 - 40*K5**2 - 8*K6**2 + 1490
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.91']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.70462', 'vk6.70477', 'vk6.70526', 'vk6.70601', 'vk6.70632', 'vk6.70657', 'vk6.70755', 'vk6.70841', 'vk6.70913', 'vk6.70941', 'vk6.71003', 'vk6.71106', 'vk6.71152', 'vk6.71167', 'vk6.71238', 'vk6.71297', 'vk6.71315', 'vk6.71330', 'vk6.73547', 'vk6.74219', 'vk6.74358', 'vk6.75007', 'vk6.75304', 'vk6.76416', 'vk6.76578', 'vk6.76649', 'vk6.76976', 'vk6.78284', 'vk6.79263', 'vk6.79398', 'vk6.79941', 'vk6.80752', 'vk6.81493', 'vk6.83989', 'vk6.86355', 'vk6.86863', 'vk6.87278', 'vk6.88064', 'vk6.88239', 'vk6.88247']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5O6U2U5U6U1U3U4
R3 orbit {'O1O2O3O4O5U1O6U5U2U6U3U4', 'O1O2O3O4O5O6U2U5U6U1U3U4'}
R3 orbit length 2
Gauss code of -K O1O2O3O4O5O6U3U4U6U1U2U5
Gauss code of K* O1O2O3O4O5O6U4U1U5U6U2U3
Gauss code of -K* O1O2O3O4O5O6U4U5U1U2U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -4 1 3 0 2],[ 2 0 -2 2 3 0 2],[ 4 2 0 3 4 1 2],[-1 -2 -3 0 1 -1 1],[-3 -3 -4 -1 0 -1 1],[ 0 0 -1 1 1 0 1],[-2 -2 -2 -1 -1 -1 0]]
Primitive based matrix [[ 0 3 2 1 0 -2 -4],[-3 0 1 -1 -1 -3 -4],[-2 -1 0 -1 -1 -2 -2],[-1 1 1 0 -1 -2 -3],[ 0 1 1 1 0 0 -1],[ 2 3 2 2 0 0 -2],[ 4 4 2 3 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-1,0,2,4,-1,1,1,3,4,1,1,2,2,1,2,3,0,1,2]
Phi over symmetry [-4,-2,0,1,2,3,0,3,2,4,3,2,1,2,2,0,1,2,0,1,2]
Phi of -K [-4,-2,0,1,2,3,0,3,2,4,3,2,1,2,2,0,1,2,0,1,2]
Phi of K* [-3,-2,-1,0,2,4,2,1,2,2,3,0,1,2,4,0,1,2,2,3,0]
Phi of -K* [-4,-2,0,1,2,3,2,1,3,2,4,0,2,2,3,1,1,1,1,1,-1]
Symmetry type of based matrix c
u-polynomial t^4-t^3-t
Normalized Jones-Krushkal polynomial 5z^2+18z+17
Enhanced Jones-Krushkal polynomial 5w^3z^2+18w^2z+17w
Inner characteristic polynomial t^6+57t^4+12t^2
Outer characteristic polynomial t^7+91t^5+62t^3+3t
Flat arrow polynomial 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 6*K1*K2 - 2*K1*K3 + 2*K2 + 2*K3 + 3
2-strand cable arrow polynomial -64*K1**4 + 128*K1**3*K2*K3 - 192*K1**3*K3 - 128*K1**2*K2**4 + 576*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 2592*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 256*K1**2*K2*K4 + 2488*K1**2*K2 - 272*K1**2*K3**2 - 32*K1**2*K3*K5 - 1992*K1**2 + 1504*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 928*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 128*K1*K2**2*K5 + 64*K1*K2*K3**3 - 288*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 3176*K1*K2*K3 + 440*K1*K3*K4 + 40*K1*K4*K5 - 32*K2**6 - 256*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 1464*K2**4 + 128*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 + 64*K2**2*K3**2*K4 - 1088*K2**2*K3**2 - 32*K2**2*K3*K7 - 232*K2**2*K4**2 + 1120*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 872*K2**2 + 464*K2*K3*K5 + 72*K2*K4*K6 + 8*K2*K5*K7 - 16*K3**4 + 8*K3**2*K6 - 880*K3**2 - 228*K4**2 - 40*K5**2 - 8*K6**2 + 1490
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}]]
If K is slice False
Contact