Gauss code |
O1O2O3O4U3U2O5O6U5U6U1U4 |
R3 orbit |
{'O1O2O3O4U3U2O5O6U5U6U1U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U4U5U6O5O6U3U2 |
Gauss code of K* |
O1O2O3O4U3U5U6U4O6O5U1U2 |
Gauss code of -K* |
O1O2O3O4U3U4O5O6U1U6U5U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 -1 3 -1 1],[ 1 0 0 0 3 -1 1],[ 1 0 0 0 2 0 0],[ 1 0 0 0 1 0 0],[-3 -3 -2 -1 0 -1 1],[ 1 1 0 0 1 0 1],[-1 -1 0 0 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 1 -1 -1 -1 -1],[-3 0 1 -1 -1 -2 -3],[-1 -1 0 0 -1 0 -1],[ 1 1 0 0 0 0 0],[ 1 1 1 0 0 0 1],[ 1 2 0 0 0 0 0],[ 1 3 1 0 -1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,1,1,1,1,-1,1,1,2,3,0,1,0,1,0,0,0,0,-1,0] |
Phi over symmetry |
[-3,-1,1,1,1,1,-1,1,1,2,3,0,1,0,1,0,0,0,0,-1,0] |
Phi of -K |
[-1,-1,-1,-1,1,3,-1,0,0,1,3,0,0,1,1,0,2,2,2,3,3] |
Phi of K* |
[-3,-1,1,1,1,1,3,1,2,3,3,1,2,1,2,0,-1,0,0,0,0] |
Phi of -K* |
[-1,-1,-1,-1,1,3,-1,0,0,1,3,0,0,1,1,0,0,1,0,2,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+3t |
Normalized Jones-Krushkal polynomial |
7z^2+24z+21 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+11w^3z^2+24w^2z+21w |
Inner characteristic polynomial |
t^6+19t^4+24t^2 |
Outer characteristic polynomial |
t^7+33t^5+50t^3+8t |
Flat arrow polynomial |
4*K1**2*K2 - 2*K1**2 - 2*K1*K2 - 2*K1*K3 + K1 - 2*K2**2 + K3 + K4 + 2 |
2-strand cable arrow polynomial |
-2624*K1**4 + 896*K1**3*K2*K3 + 256*K1**3*K3*K4 - 1024*K1**3*K3 + 384*K1**2*K2**2*K4 - 4080*K1**2*K2**2 + 32*K1**2*K2*K4**2 - 928*K1**2*K2*K4 + 5792*K1**2*K2 - 1792*K1**2*K3**2 - 64*K1**2*K3*K5 - 720*K1**2*K4**2 - 32*K1**2*K4*K6 - 2244*K1**2 + 1056*K1*K2**3*K3 + 384*K1*K2**2*K3*K4 - 288*K1*K2**2*K3 - 224*K1*K2**2*K5 + 32*K1*K2*K3*K4**2 - 1216*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 5672*K1*K2*K3 - 64*K1*K2*K4*K5 - 32*K1*K3*K4*K6 + 2264*K1*K3*K4 + 688*K1*K4*K5 + 16*K1*K5*K6 + 8*K1*K6*K7 - 32*K2**4*K4**2 + 448*K2**4*K4 - 1336*K2**4 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 1040*K2**2*K3**2 + 32*K2**2*K4**3 - 936*K2**2*K4**2 + 1744*K2**2*K4 - 8*K2**2*K6**2 - 1930*K2**2 - 160*K2*K3**2*K4 + 736*K2*K3*K5 - 32*K2*K4**2*K6 + 496*K2*K4*K6 + 8*K2*K6*K8 - 16*K3**2*K4**2 - 1488*K3**2 + 16*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 924*K4**2 - 128*K5**2 - 38*K6**2 - 4*K7**2 - 2*K8**2 + 2540 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {1, 3}, {2}]] |
If K is slice |
False |