Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.918

Min(phi) over symmetries of the knot is: [-1,-1,-1,1,1,1,-1,-1,1,1,1,0,0,1,1,1,0,1,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.918', '7.28435', '7.42620']
Arrow polynomial of the knot is: 16*K1**3 - 12*K1**2 - 12*K1*K2 - 6*K1 + 6*K2 + 2*K3 + 7
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.141', '6.846', '6.918', '6.941', '6.2064', '6.2066']
Outer characteristic polynomial of the knot is: t^7+17t^5+23t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.918', '7.28435', '7.42620']
2-strand cable arrow polynomial of the knot is: -2048*K1**6 - 7168*K1**4*K2**2 + 9216*K1**4*K2 - 6304*K1**4 + 4864*K1**3*K2*K3 - 1536*K1**3*K3 - 7808*K1**2*K2**4 + 12288*K1**2*K2**3 + 2048*K1**2*K2**2*K4 - 17088*K1**2*K2**2 - 2688*K1**2*K2*K4 + 9440*K1**2*K2 - 224*K1**2*K3**2 - 32*K1**2 + 6464*K1*K2**3*K3 - 4160*K1*K2**2*K3 - 1600*K1*K2**2*K5 - 448*K1*K2*K3*K4 + 7360*K1*K2*K3 + 240*K1*K3*K4 + 48*K1*K4*K5 - 2560*K2**6 + 2560*K2**4*K4 - 4368*K2**4 - 448*K2**3*K6 - 640*K2**2*K3**2 - 272*K2**2*K4**2 + 2896*K2**2*K4 + 564*K2**2 + 192*K2*K3*K5 + 48*K2*K4*K6 - 392*K3**2 - 132*K4**2 - 24*K5**2 - 4*K6**2 + 1714
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.918']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.2', 'vk6.5', 'vk6.8', 'vk6.9', 'vk6.11', 'vk6.13', 'vk6.1170', 'vk6.1173', 'vk6.1174', 'vk6.1184', 'vk6.1187', 'vk6.1192', 'vk6.1194', 'vk6.2341', 'vk6.2342', 'vk6.2349', 'vk6.2350', 'vk6.33526', 'vk6.33528', 'vk6.53767']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is -.
The reverse -K is
The mirror image K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3U4O5O6U5U6U1U2
R3 orbit {'O1O2O3O4U3U4O5O6U5U6U1U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U3U4U5U6O5O6U1U2
Gauss code of K* O1O2O3O4U3U4U5U6O5O6U1U2
Gauss code of -K* Same
Diagrammatic symmetry type -
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 1 -1 1 -1 1],[ 1 0 1 -1 1 -1 1],[-1 -1 0 -1 1 -1 1],[ 1 1 1 0 1 0 0],[-1 -1 -1 -1 0 0 0],[ 1 1 1 0 0 0 1],[-1 -1 -1 0 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 -1 -1 -1],[-1 0 1 1 -1 -1 -1],[-1 -1 0 0 0 -1 -1],[-1 -1 0 0 -1 0 -1],[ 1 1 0 1 0 0 1],[ 1 1 1 0 0 0 1],[ 1 1 1 1 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,1,1,1,-1,-1,1,1,1,0,0,1,1,1,0,1,0,-1,-1]
Phi over symmetry [-1,-1,-1,1,1,1,-1,-1,1,1,1,0,0,1,1,1,0,1,0,-1,-1]
Phi of -K [-1,-1,-1,1,1,1,-1,0,1,1,2,1,1,1,1,1,2,1,-1,-1,0]
Phi of K* [-1,-1,-1,1,1,1,-1,0,1,1,2,1,1,1,1,1,2,1,-1,-1,0]
Phi of -K* [-1,-1,-1,1,1,1,-1,-1,1,1,1,0,0,1,1,1,0,1,0,-1,-1]
Symmetry type of based matrix -
u-polynomial 0
Normalized Jones-Krushkal polynomial 7z^2+27z+27
Enhanced Jones-Krushkal polynomial 7w^3z^2+27w^2z+27w
Inner characteristic polynomial t^6+11t^4+11t^2+1
Outer characteristic polynomial t^7+17t^5+23t^3+7t
Flat arrow polynomial 16*K1**3 - 12*K1**2 - 12*K1*K2 - 6*K1 + 6*K2 + 2*K3 + 7
2-strand cable arrow polynomial -2048*K1**6 - 7168*K1**4*K2**2 + 9216*K1**4*K2 - 6304*K1**4 + 4864*K1**3*K2*K3 - 1536*K1**3*K3 - 7808*K1**2*K2**4 + 12288*K1**2*K2**3 + 2048*K1**2*K2**2*K4 - 17088*K1**2*K2**2 - 2688*K1**2*K2*K4 + 9440*K1**2*K2 - 224*K1**2*K3**2 - 32*K1**2 + 6464*K1*K2**3*K3 - 4160*K1*K2**2*K3 - 1600*K1*K2**2*K5 - 448*K1*K2*K3*K4 + 7360*K1*K2*K3 + 240*K1*K3*K4 + 48*K1*K4*K5 - 2560*K2**6 + 2560*K2**4*K4 - 4368*K2**4 - 448*K2**3*K6 - 640*K2**2*K3**2 - 272*K2**2*K4**2 + 2896*K2**2*K4 + 564*K2**2 + 192*K2*K3*K5 + 48*K2*K4*K6 - 392*K3**2 - 132*K4**2 - 24*K5**2 - 4*K6**2 + 1714
Genus of based matrix 0
Fillings of based matrix [[{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice True
Contact