Min(phi) over symmetries of the knot is: [-3,-1,2,2,1,1,2,2,3,0] |
Flat knots (up to 7 crossings) with same phi are :['6.926'] |
Arrow polynomial of the knot is: 4*K1**2*K2 - 4*K1**2 - 2*K1*K2 - 4*K1*K3 + K1 + 2*K2 + K3 + K4 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.115', '6.407', '6.413', '6.448', '6.844', '6.879', '6.888', '6.926', '6.934', '6.1140', '6.1143', '6.1161', '6.1177'] |
Outer characteristic polynomial of the knot is: t^5+45t^3+51t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.926'] |
2-strand cable arrow polynomial of the knot is: 1056*K1**4*K2 - 1728*K1**4 - 128*K1**3*K2**2*K3 + 800*K1**3*K2*K3 - 384*K1**3*K3 + 128*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 3088*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 192*K1**2*K2*K4 + 4832*K1**2*K2 - 640*K1**2*K3**2 - 3804*K1**2 + 160*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 160*K1*K2**2*K5 - 672*K1*K2*K3*K4 + 5256*K1*K2*K3 - 192*K1*K2*K4*K5 + 1704*K1*K3*K4 + 376*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**4*K4**2 + 64*K2**4*K4 - 256*K2**4 + 32*K2**3*K3*K5 + 64*K2**3*K4*K6 - 96*K2**3*K6 - 544*K2**2*K3**2 - 32*K2**2*K3*K7 - 360*K2**2*K4**2 - 32*K2**2*K4*K8 + 1760*K2**2*K4 - 16*K2**2*K5**2 - 16*K2**2*K6**2 - 4406*K2**2 - 160*K2*K3**2*K4 + 1184*K2*K3*K5 + 696*K2*K4*K6 + 24*K2*K5*K7 + 16*K2*K6*K8 + 48*K3**2*K6 - 2432*K3**2 - 1328*K4**2 - 448*K5**2 - 202*K6**2 - 4*K7**2 - 2*K8**2 + 4128 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.926'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11200', 'vk6.11211', 'vk6.11215', 'vk6.12397', 'vk6.12401', 'vk6.12412', 'vk6.12416', 'vk6.14509', 'vk6.14510', 'vk6.15730', 'vk6.15731', 'vk6.16157', 'vk6.16158', 'vk6.30791', 'vk6.30813', 'vk6.30817', 'vk6.32001', 'vk6.32005', 'vk6.34080', 'vk6.34196', 'vk6.34478', 'vk6.34517', 'vk6.51936', 'vk6.51959', 'vk6.51963', 'vk6.54151', 'vk6.54152', 'vk6.54343', 'vk6.54344', 'vk6.63610', 'vk6.63621', 'vk6.63625'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U3U5O6O5U2U1U6U4 |
R3 orbit | {'O1O2O3O4U3U5O6O5U2U1U6U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U1U5U4U3O6O5U6U2 |
Gauss code of K* | O1O2O3O4U2U1U5U4O5O6U3U6 |
Gauss code of -K* | O1O2O3O4U5U2O5O6U1U6U4U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -2 -1 3 1 1],[ 2 0 0 0 4 2 1],[ 2 0 0 0 3 2 0],[ 1 0 0 0 1 1 0],[-3 -4 -3 -1 0 -2 -1],[-1 -2 -2 -1 2 0 1],[-1 -1 0 0 1 -1 0]] |
Primitive based matrix | [[ 0 3 1 -2 -2],[-3 0 -1 -3 -4],[-1 1 0 0 -1],[ 2 3 0 0 0],[ 2 4 1 0 0]] |
If based matrix primitive | False |
Phi of primitive based matrix | [-3,-1,2,2,1,3,4,0,1,0] |
Phi over symmetry | [-3,-1,2,2,1,1,2,2,3,0] |
Phi of -K | [-2,-2,1,3,0,2,1,3,2,1] |
Phi of K* | [-3,-1,2,2,1,1,2,2,3,0] |
Phi of -K* | [-2,-2,1,3,0,0,3,1,4,1] |
Symmetry type of based matrix | c |
u-polynomial | -t^3+2t^2-t |
Normalized Jones-Krushkal polynomial | 7z^2+28z+29 |
Enhanced Jones-Krushkal polynomial | 7w^3z^2+28w^2z+29w |
Inner characteristic polynomial | t^4+27t^2+9 |
Outer characteristic polynomial | t^5+45t^3+51t |
Flat arrow polynomial | 4*K1**2*K2 - 4*K1**2 - 2*K1*K2 - 4*K1*K3 + K1 + 2*K2 + K3 + K4 + 2 |
2-strand cable arrow polynomial | 1056*K1**4*K2 - 1728*K1**4 - 128*K1**3*K2**2*K3 + 800*K1**3*K2*K3 - 384*K1**3*K3 + 128*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 3088*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 192*K1**2*K2*K4 + 4832*K1**2*K2 - 640*K1**2*K3**2 - 3804*K1**2 + 160*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 160*K1*K2**2*K5 - 672*K1*K2*K3*K4 + 5256*K1*K2*K3 - 192*K1*K2*K4*K5 + 1704*K1*K3*K4 + 376*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**4*K4**2 + 64*K2**4*K4 - 256*K2**4 + 32*K2**3*K3*K5 + 64*K2**3*K4*K6 - 96*K2**3*K6 - 544*K2**2*K3**2 - 32*K2**2*K3*K7 - 360*K2**2*K4**2 - 32*K2**2*K4*K8 + 1760*K2**2*K4 - 16*K2**2*K5**2 - 16*K2**2*K6**2 - 4406*K2**2 - 160*K2*K3**2*K4 + 1184*K2*K3*K5 + 696*K2*K4*K6 + 24*K2*K5*K7 + 16*K2*K6*K8 + 48*K3**2*K6 - 2432*K3**2 - 1328*K4**2 - 448*K5**2 - 202*K6**2 - 4*K7**2 - 2*K8**2 + 4128 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}]] |
If K is slice | False |