Gauss code |
O1O2O3O4U3U5O6O5U2U6U1U4 |
R3 orbit |
{'O1O2O3O4U3U5O6O5U2U6U1U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U4U5U3O6O5U6U2 |
Gauss code of K* |
O1O2O3O4U3U1U5U4O5O6U2U6 |
Gauss code of -K* |
O1O2O3O4U5U3O5O6U1U6U4U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -2 -1 3 1 0],[ 1 0 -1 0 3 2 0],[ 2 1 0 0 3 2 0],[ 1 0 0 0 1 1 0],[-3 -3 -3 -1 0 -2 -1],[-1 -2 -2 -1 2 0 0],[ 0 0 0 0 1 0 0]] |
Primitive based matrix |
[[ 0 3 1 0 -1 -1 -2],[-3 0 -2 -1 -1 -3 -3],[-1 2 0 0 -1 -2 -2],[ 0 1 0 0 0 0 0],[ 1 1 1 0 0 0 0],[ 1 3 2 0 0 0 -1],[ 2 3 2 0 0 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,1,1,2,2,1,1,3,3,0,1,2,2,0,0,0,0,0,1] |
Phi over symmetry |
[-3,-1,0,1,1,2,0,2,1,3,2,1,0,1,1,1,1,2,0,0,1] |
Phi of -K |
[-2,-1,-1,0,1,3,0,1,2,1,2,0,1,0,1,1,1,3,1,2,0] |
Phi of K* |
[-3,-1,0,1,1,2,0,2,1,3,2,1,0,1,1,1,1,2,0,0,1] |
Phi of -K* |
[-2,-1,-1,0,1,3,0,1,0,2,3,0,0,1,1,0,2,3,0,1,2] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+t^2+t |
Normalized Jones-Krushkal polynomial |
4z^2+21z+27 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+21w^2z+27w |
Inner characteristic polynomial |
t^6+34t^4+18t^2+1 |
Outer characteristic polynomial |
t^7+50t^5+35t^3+5t |
Flat arrow polynomial |
-2*K1**2 - 6*K1*K2 + 3*K1 - 4*K2**2 + K2 + 3*K3 + 2*K4 + 4 |
2-strand cable arrow polynomial |
-2640*K1**4 + 320*K1**3*K2*K3 + 160*K1**3*K3*K4 - 320*K1**3*K3 + 128*K1**2*K2**2*K4 - 1872*K1**2*K2**2 + 32*K1**2*K2*K3*K5 - 704*K1**2*K2*K4 + 5040*K1**2*K2 - 1184*K1**2*K3**2 - 352*K1**2*K3*K5 - 304*K1**2*K4**2 - 64*K1**2*K5**2 - 3208*K1**2 - 576*K1*K2**2*K3 - 160*K1*K2**2*K5 - 480*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 4368*K1*K2*K3 + 2928*K1*K3*K4 + 984*K1*K4*K5 + 64*K1*K5*K6 - 72*K2**4 - 96*K2**2*K3**2 - 88*K2**2*K4**2 + 1008*K2**2*K4 - 2926*K2**2 - 32*K2*K3*K4*K5 + 568*K2*K3*K5 + 96*K2*K4*K6 + 8*K2*K5*K7 - 16*K3**4 - 48*K3**2*K4**2 + 32*K3**2*K6 - 2120*K3**2 + 88*K3*K4*K7 - 16*K4**4 + 32*K4**2*K8 - 1478*K4**2 - 452*K5**2 - 42*K6**2 - 28*K7**2 - 12*K8**2 + 3496 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {5}, {1, 4}, {2}], [{4, 6}, {2, 5}, {1, 3}]] |
If K is slice |
False |