Gauss code |
O1O2O3O4O5O6U2U5U6U3U1U4 |
R3 orbit |
{'O1O2O3O4O5O6U2U5U6U3U1U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U3U6U4U1U2U5 |
Gauss code of K* |
O1O2O3O4O5O6U5U1U4U6U2U3 |
Gauss code of -K* |
O1O2O3O4O5O6U4U5U1U3U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -4 0 3 0 2],[ 1 0 -3 1 3 0 2],[ 4 3 0 3 4 1 2],[ 0 -1 -3 0 1 -1 1],[-3 -3 -4 -1 0 -1 1],[ 0 0 -1 1 1 0 1],[-2 -2 -2 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 2 0 0 -1 -4],[-3 0 1 -1 -1 -3 -4],[-2 -1 0 -1 -1 -2 -2],[ 0 1 1 0 1 0 -1],[ 0 1 1 -1 0 -1 -3],[ 1 3 2 0 1 0 -3],[ 4 4 2 1 3 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,0,0,1,4,-1,1,1,3,4,1,1,2,2,-1,0,1,1,3,3] |
Phi over symmetry |
[-4,-1,0,0,2,3,0,1,3,4,3,0,1,1,1,1,1,2,1,2,2] |
Phi of -K |
[-4,-1,0,0,2,3,0,1,3,4,3,0,1,1,1,1,1,2,1,2,2] |
Phi of K* |
[-3,-2,0,0,1,4,2,2,2,1,3,1,1,1,4,-1,0,1,1,3,0] |
Phi of -K* |
[-4,-1,0,0,2,3,3,1,3,2,4,0,1,2,3,1,1,1,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3-t^2+t |
Normalized Jones-Krushkal polynomial |
7z+15 |
Enhanced Jones-Krushkal polynomial |
-10w^3z+17w^2z+15w |
Inner characteristic polynomial |
t^6+59t^4+24t^2 |
Outer characteristic polynomial |
t^7+89t^5+105t^3 |
Flat arrow polynomial |
16*K1**3 + 4*K1**2*K2 - 8*K1**2 - 10*K1*K2 - 2*K1*K3 - 7*K1 + 3*K2 + K3 + 4 |
2-strand cable arrow polynomial |
256*K1**4*K2**3 - 640*K1**4*K2**2 + 704*K1**4*K2 - 832*K1**4 + 96*K1**3*K2*K3 + 32*K1**3*K3*K4 - 768*K1**2*K2**4 + 1280*K1**2*K2**3 - 3360*K1**2*K2**2 + 2816*K1**2*K2 - 96*K1**2*K3**2 - 96*K1**2*K4**2 - 1928*K1**2 + 896*K1*K2**3*K3 + 2528*K1*K2*K3 + 480*K1*K3*K4 + 104*K1*K4*K5 + 16*K1*K5*K6 - 512*K2**6 - 320*K2**4*K3**2 - 32*K2**4*K4**2 + 768*K2**4*K4 - 2256*K2**4 + 384*K2**3*K3*K5 + 32*K2**3*K4*K6 - 1040*K2**2*K3**2 - 472*K2**2*K4**2 + 1360*K2**2*K4 - 144*K2**2*K5**2 - 8*K2**2*K6**2 - 446*K2**2 + 592*K2*K3*K5 + 176*K2*K4*K6 + 16*K2*K5*K7 - 32*K3**2*K4**2 - 820*K3**2 + 32*K3*K4*K7 - 578*K4**2 - 148*K5**2 - 42*K6**2 - 8*K7**2 + 2008 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |