Gauss code |
O1O2O3O4U3U5O6O5U4U1U6U2 |
R3 orbit |
{'O1O2O3O4U3U5O6O5U4U1U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U5U4U1O6O5U6U2 |
Gauss code of K* |
O1O2O3O4U2U4U5U1O5O6U3U6 |
Gauss code of -K* |
O1O2O3O4U5U2O5O6U4U6U1U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 1 -1 0 1 1],[ 2 0 2 -1 1 2 1],[-1 -2 0 -1 0 0 0],[ 1 1 1 0 1 1 1],[ 0 -1 0 -1 0 0 0],[-1 -2 0 -1 0 0 1],[-1 -1 0 -1 0 -1 0]] |
Primitive based matrix |
[[ 0 1 1 1 0 -1 -2],[-1 0 1 0 0 -1 -2],[-1 -1 0 0 0 -1 -1],[-1 0 0 0 0 -1 -2],[ 0 0 0 0 0 -1 -1],[ 1 1 1 1 1 0 1],[ 2 2 1 2 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,0,1,2,-1,0,0,1,2,0,0,1,1,0,1,2,1,1,-1] |
Phi over symmetry |
[-2,-1,0,1,1,1,-1,1,1,2,2,1,1,1,1,0,0,0,-1,0,0] |
Phi of -K |
[-2,-1,0,1,1,1,2,1,1,1,2,0,1,1,1,1,1,1,0,-1,0] |
Phi of K* |
[-1,-1,-1,0,1,2,-1,0,1,1,2,0,1,1,1,1,1,1,0,1,2] |
Phi of -K* |
[-2,-1,0,1,1,1,-1,1,1,2,2,1,1,1,1,0,0,0,-1,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
2z^2+23z+39 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+23w^2z+39w |
Inner characteristic polynomial |
t^6+16t^4+14t^2+1 |
Outer characteristic polynomial |
t^7+24t^5+31t^3+5t |
Flat arrow polynomial |
-10*K1**2 - 8*K1*K2 + 4*K1 + 5*K2 + 4*K3 + 6 |
2-strand cable arrow polynomial |
-832*K1**6 - 576*K1**4*K2**2 + 2144*K1**4*K2 - 5712*K1**4 + 1312*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1536*K1**3*K3 - 5456*K1**2*K2**2 - 640*K1**2*K2*K4 + 11344*K1**2*K2 - 2064*K1**2*K3**2 - 336*K1**2*K4**2 - 5668*K1**2 - 512*K1*K2**2*K3 - 288*K1*K2*K3*K4 + 9000*K1*K2*K3 + 2744*K1*K3*K4 + 416*K1*K4*K5 - 520*K2**4 - 752*K2**2*K3**2 - 256*K2**2*K4**2 + 1072*K2**2*K4 - 5240*K2**2 - 128*K2*K3**2*K4 + 728*K2*K3*K5 + 320*K2*K4*K6 + 64*K3**2*K6 - 3052*K3**2 - 1082*K4**2 - 232*K5**2 - 96*K6**2 + 5800 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{6}, {1, 5}, {3, 4}, {2}]] |
If K is slice |
False |