| Gauss code |
O1O2O3O4U5U6O5O6U1U2U3U4 |
| R3 orbit |
{'O1O2O3O4U5U6O5O6U1U2U3U4'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4U1U2U3U4O5O6U5U6 |
| Gauss code of K* |
O1O2O3O4U1U2U3U4O5O6U5U6 |
| Gauss code of -K* |
Same |
| Diagrammatic symmetry type |
- |
| Flat genus of the diagram |
2 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -3 -1 1 3 -1 1],[ 3 0 1 2 3 2 4],[ 1 -1 0 1 2 0 2],[-1 -2 -1 0 1 -2 0],[-3 -3 -2 -1 0 -4 -2],[ 1 -2 0 2 4 0 1],[-1 -4 -2 0 2 -1 0]] |
| Primitive based matrix |
[[ 0 3 1 1 -1 -1 -3],[-3 0 -1 -2 -2 -4 -3],[-1 1 0 0 -1 -2 -2],[-1 2 0 0 -2 -1 -4],[ 1 2 1 2 0 0 -1],[ 1 4 2 1 0 0 -2],[ 3 3 2 4 1 2 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-3,-1,-1,1,1,3,1,2,2,4,3,0,1,2,2,2,1,4,0,1,2] |
| Phi over symmetry |
[-3,-1,-1,1,1,3,0,1,0,2,3,0,1,0,0,0,1,2,0,0,1] |
| Phi of -K |
[-3,-1,-1,1,1,3,0,1,0,2,3,0,1,0,0,0,1,2,0,0,1] |
| Phi of K* |
[-3,-1,-1,1,1,3,0,1,0,2,3,0,1,0,0,0,1,2,0,0,1] |
| Phi of -K* |
[-3,-1,-1,1,1,3,1,2,2,4,3,0,1,2,2,2,1,4,0,1,2] |
| Symmetry type of based matrix |
- |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
z+3 |
| Enhanced Jones-Krushkal polynomial |
12w^4z-12w^3z+w^2z+3w |
| Inner characteristic polynomial |
t^6+69t^4+180t^2 |
| Outer characteristic polynomial |
t^7+91t^5+240t^3 |
| Flat arrow polynomial |
-16*K1**4 + 8*K1**2*K2 + 8*K1**2 + 1 |
| 2-strand cable arrow polynomial |
-512*K1**4 - 1536*K1**2*K2**6 + 1536*K1**2*K2**5 - 1408*K1**2*K2**4 + 256*K1**2*K2**3 - 928*K1**2*K2**2 + 1184*K1**2*K2 - 128*K1**2*K3**2 - 368*K1**2 + 1024*K1*K2**5*K3 + 256*K1*K2**3*K3 + 864*K1*K2*K3 + 96*K1*K3*K4 - 768*K2**8 + 512*K2**6*K4 - 768*K2**6 - 128*K2**4*K3**2 - 64*K2**4*K4**2 + 256*K2**4*K4 + 512*K2**4 - 96*K2**2*K3**2 + 192*K2**2*K4 - 256*K2**2 + 64*K2*K3*K5 - 168*K3**2 - 32*K4**2 - 8*K5**2 + 414 |
| Genus of based matrix |
0 |
| Fillings of based matrix |
[[{5, 6}, {1, 4}, {2, 3}]] |
| If K is slice |
True |