Gauss code |
O1O2O3O4U5U6O5O6U1U3U2U4 |
R3 orbit |
{'O1O2O3O4U5U6O5O6U1U3U2U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U3U2U4O5O6U5U6 |
Gauss code of K* |
O1O2O3O4U1U3U2U4O5O6U5U6 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 0 0 3 -1 1],[ 3 0 2 1 3 2 4],[ 0 -2 0 0 2 -1 1],[ 0 -1 0 0 1 -1 1],[-3 -3 -2 -1 0 -4 -2],[ 1 -2 1 1 4 0 1],[-1 -4 -1 -1 2 -1 0]] |
Primitive based matrix |
[[ 0 3 1 0 0 -1 -3],[-3 0 -2 -1 -2 -4 -3],[-1 2 0 -1 -1 -1 -4],[ 0 1 1 0 0 -1 -1],[ 0 2 1 0 0 -1 -2],[ 1 4 1 1 1 0 -2],[ 3 3 4 1 2 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,0,1,3,2,1,2,4,3,1,1,1,4,0,1,1,1,2,2] |
Phi over symmetry |
[-3,-1,0,0,1,3,0,1,2,0,3,0,0,1,0,0,0,1,0,2,0] |
Phi of -K |
[-3,-1,0,0,1,3,0,1,2,0,3,0,0,1,0,0,0,1,0,2,0] |
Phi of K* |
[-3,-1,0,0,1,3,0,1,2,0,3,0,0,1,0,0,0,1,0,2,0] |
Phi of -K* |
[-3,-1,0,0,1,3,2,1,2,4,3,1,1,1,4,0,1,1,1,2,2] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
7z+15 |
Enhanced Jones-Krushkal polynomial |
4w^4z-6w^3z+9w^2z+15w |
Inner characteristic polynomial |
t^6+64t^4+171t^2 |
Outer characteristic polynomial |
t^7+84t^5+227t^3 |
Flat arrow polynomial |
-4*K1*K3 + 2*K2 + 2*K4 + 1 |
2-strand cable arrow polynomial |
-1792*K1**2*K3**2 - 96*K1**2*K6**2 - 632*K1**2 + 2336*K1*K2*K3 + 1184*K1*K3*K4 + 96*K1*K5*K6 + 64*K1*K6*K7 - 1056*K2**2*K3**2 - 48*K2**2*K6**2 - 544*K2**2 + 672*K2*K3*K5 + 48*K2*K4*K6 + 32*K2*K6*K8 - 672*K3**2 - 156*K4**2 - 96*K5**2 - 48*K6**2 - 8*K7**2 - 4*K8**2 + 718 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}]] |
If K is slice |
True |