Gauss code |
O1O2O3O4U5U1O6O5U6U3U4U2 |
R3 orbit |
{'O1O2O3O4U5U1O6O5U6U3U4U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U1U2U5O6O5U4U6 |
Gauss code of K* |
O1O2O3O4U5U4U2U3O6O5U1U6 |
Gauss code of -K* |
O1O2O3O4U5U4O6O5U2U3U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 1 0 2 0 -1],[ 2 0 2 0 1 2 -1],[-1 -2 0 -1 1 0 -1],[ 0 0 1 0 1 1 -1],[-2 -1 -1 -1 0 -1 -1],[ 0 -2 0 -1 1 0 -1],[ 1 1 1 1 1 1 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -1 -1 -1],[-1 1 0 0 -1 -1 -2],[ 0 1 0 0 -1 -1 -2],[ 0 1 1 1 0 -1 0],[ 1 1 1 1 1 0 1],[ 2 1 2 2 0 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,1,1,1,1,1,0,1,1,2,1,1,2,1,0,-1] |
Phi over symmetry |
[-2,-1,0,0,1,2,-1,0,2,2,1,1,1,1,1,1,1,1,0,1,1] |
Phi of -K |
[-2,-1,0,0,1,2,2,0,2,1,3,0,0,1,2,1,1,1,0,1,0] |
Phi of K* |
[-2,-1,0,0,1,2,0,1,1,2,3,0,1,1,1,1,0,2,0,0,2] |
Phi of -K* |
[-2,-1,0,0,1,2,-1,0,2,2,1,1,1,1,1,1,1,1,0,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
4z^2+23z+31 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2-2w^3z+25w^2z+31w |
Inner characteristic polynomial |
t^6+19t^4+14t^2 |
Outer characteristic polynomial |
t^7+29t^5+60t^3+9t |
Flat arrow polynomial |
12*K1**3 - 8*K1**2 - 8*K1*K2 - 5*K1 + 4*K2 + K3 + 5 |
2-strand cable arrow polynomial |
-256*K1**6 - 576*K1**4*K2**2 + 1536*K1**4*K2 - 3792*K1**4 + 704*K1**3*K2*K3 - 416*K1**3*K3 - 1920*K1**2*K2**4 + 4032*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 256*K1**2*K2**2*K4 - 11296*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 544*K1**2*K2*K4 + 11952*K1**2*K2 - 560*K1**2*K3**2 - 80*K1**2*K4**2 - 5420*K1**2 - 256*K1*K2**4*K3 + 2528*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 2688*K1*K2**2*K3 - 192*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 8520*K1*K2*K3 + 1064*K1*K3*K4 + 96*K1*K4*K5 - 352*K2**6 + 448*K2**4*K4 - 2768*K2**4 - 1072*K2**2*K3**2 - 192*K2**2*K4**2 + 1984*K2**2*K4 - 3246*K2**2 + 328*K2*K3*K5 + 16*K2*K4*K6 - 1812*K3**2 - 464*K4**2 - 40*K5**2 - 2*K6**2 + 4574 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {5}, {1, 4}, {3}]] |
If K is slice |
False |