| Gauss code |
O1O2O3O4U5U2O6O5U1U6U4U3 |
| R3 orbit |
{'O1O2O3O4U5U2O6O5U1U6U4U3'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4U2U1U5U4O6O5U3U6 |
| Gauss code of K* |
O1O2O3O4U1U5U4U3O6O5U2U6 |
| Gauss code of -K* |
O1O2O3O4U5U3O6O5U2U1U6U4 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
2 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -3 -1 2 2 0 0],[ 3 0 1 4 3 2 0],[ 1 -1 0 1 0 1 -1],[-2 -4 -1 0 0 -1 -1],[-2 -3 0 0 0 -1 -1],[ 0 -2 -1 1 1 0 0],[ 0 0 1 1 1 0 0]] |
| Primitive based matrix |
[[ 0 2 2 0 0 -1 -3],[-2 0 0 -1 -1 0 -3],[-2 0 0 -1 -1 -1 -4],[ 0 1 1 0 0 1 0],[ 0 1 1 0 0 -1 -2],[ 1 0 1 -1 1 0 -1],[ 3 3 4 0 2 1 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-2,0,0,1,3,0,1,1,0,3,1,1,1,4,0,-1,0,1,2,1] |
| Phi over symmetry |
[-3,-1,0,0,2,2,1,0,2,3,4,-1,1,0,1,0,1,1,1,1,0] |
| Phi of -K |
[-3,-1,0,0,2,2,1,1,3,1,2,0,2,2,3,0,1,1,1,1,0] |
| Phi of K* |
[-2,-2,0,0,1,3,0,1,1,2,1,1,1,3,2,0,0,1,2,3,1] |
| Phi of -K* |
[-3,-1,0,0,2,2,1,0,2,3,4,-1,1,0,1,0,1,1,1,1,0] |
| Symmetry type of based matrix |
c |
| u-polynomial |
t^3-2t^2+t |
| Normalized Jones-Krushkal polynomial |
5z+11 |
| Enhanced Jones-Krushkal polynomial |
4w^4z-12w^3z+4w^3+13w^2z+7w |
| Inner characteristic polynomial |
t^6+37t^4+71t^2 |
| Outer characteristic polynomial |
t^7+55t^5+163t^3 |
| Flat arrow polynomial |
-4*K1**2 - 6*K1*K2 + 3*K1 + 2*K2 + 3*K3 + 3 |
| 2-strand cable arrow polynomial |
-48*K1**4 - 1168*K1**2*K2**2 + 904*K1**2*K2 - 96*K1**2*K3**2 - 1712*K1**2 + 448*K1*K2**3*K3 + 3328*K1*K2*K3 + 232*K1*K3*K4 + 72*K1*K4*K5 - 592*K2**4 - 1040*K2**2*K3**2 - 24*K2**2*K4**2 + 232*K2**2*K4 - 1198*K2**2 + 712*K2*K3*K5 + 40*K2*K4*K6 - 48*K3**4 + 32*K3**2*K6 - 1428*K3**2 - 160*K4**2 - 188*K5**2 - 18*K6**2 + 1718 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {4, 5}, {1, 3}]] |
| If K is slice |
False |