Gauss code |
O1O2O3O4U5U2O6O5U6U1U3U4 |
R3 orbit |
{'O1O2O3O4U5U2O6O5U6U1U3U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U2U4U5O6O5U3U6 |
Gauss code of K* |
O1O2O3O4U2U5U3U4O6O5U1U6 |
Gauss code of -K* |
O1O2O3O4U5U4O6O5U1U2U6U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 1 3 0 -1],[ 2 0 1 2 3 2 -1],[ 1 -1 0 0 1 1 -1],[-1 -2 0 0 1 0 -1],[-3 -3 -1 -1 0 -2 -1],[ 0 -2 -1 0 2 0 -1],[ 1 1 1 1 1 1 0]] |
Primitive based matrix |
[[ 0 3 1 0 -1 -1 -2],[-3 0 -1 -2 -1 -1 -3],[-1 1 0 0 0 -1 -2],[ 0 2 0 0 -1 -1 -2],[ 1 1 0 1 0 -1 -1],[ 1 1 1 1 1 0 1],[ 2 3 2 2 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,1,1,2,1,2,1,1,3,0,0,1,2,1,1,2,1,1,-1] |
Phi over symmetry |
[-3,-1,0,1,1,2,1,1,3,3,2,1,1,2,1,0,0,0,1,2,0] |
Phi of -K |
[-2,-1,-1,0,1,3,0,2,0,1,2,1,0,2,3,0,1,3,1,1,1] |
Phi of K* |
[-3,-1,0,1,1,2,1,1,3,3,2,1,1,2,1,0,0,0,1,2,0] |
Phi of -K* |
[-2,-1,-1,0,1,3,-1,1,2,2,3,1,1,1,1,1,0,1,0,2,1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+t^2+t |
Normalized Jones-Krushkal polynomial |
6z^2+23z+23 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+23w^2z+23w |
Inner characteristic polynomial |
t^6+30t^4+28t^2+1 |
Outer characteristic polynomial |
t^7+46t^5+93t^3+5t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 4*K1**2 - 6*K1*K2 - 2*K1*K3 - 2*K2**2 + K2 + 2*K3 + K4 + 3 |
2-strand cable arrow polynomial |
-208*K1**4 + 608*K1**3*K2*K3 - 224*K1**3*K3 - 128*K1**2*K2**4 + 416*K1**2*K2**3 - 448*K1**2*K2**2*K3**2 + 160*K1**2*K2**2*K4 - 3760*K1**2*K2**2 + 192*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 416*K1**2*K2*K4 + 4288*K1**2*K2 - 512*K1**2*K3**2 - 48*K1**2*K4**2 - 3556*K1**2 + 1536*K1*K2**3*K3 + 512*K1*K2**2*K3*K4 - 1792*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 192*K1*K2**2*K5 + 96*K1*K2*K3**3 - 736*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 5240*K1*K2*K3 + 1336*K1*K3*K4 + 200*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 160*K2**4*K4 - 1120*K2**4 + 64*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 + 128*K2**2*K3**2*K4 - 1280*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 280*K2**2*K4**2 + 1784*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 - 2664*K2**2 - 32*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 720*K2*K3*K5 - 32*K2*K4**2*K6 + 96*K2*K4*K6 + 16*K2*K5*K7 + 8*K2*K6*K8 - 16*K3**4 - 32*K3**2*K4**2 + 16*K3**2*K6 - 1820*K3**2 + 24*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 814*K4**2 - 148*K5**2 - 32*K6**2 - 4*K7**2 - 2*K8**2 + 2966 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}]] |
If K is slice |
False |