Gauss code |
O1O2O3O4U5U3O6O5U6U1U2U4 |
R3 orbit |
{'O1O2O3O4U5U3O6O5U6U1U2U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U3U4U5O6O5U2U6 |
Gauss code of K* |
O1O2O3O4U2U3U5U4O6O5U1U6 |
Gauss code of -K* |
O1O2O3O4U5U4O6O5U1U6U2U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 0 3 0 -1],[ 2 0 1 1 3 2 -1],[ 0 -1 0 1 2 0 -1],[ 0 -1 -1 0 0 0 -1],[-3 -3 -2 0 0 -2 -1],[ 0 -2 0 0 2 0 -1],[ 1 1 1 1 1 1 0]] |
Primitive based matrix |
[[ 0 3 0 0 0 -1 -2],[-3 0 0 -2 -2 -1 -3],[ 0 0 0 0 -1 -1 -1],[ 0 2 0 0 0 -1 -2],[ 0 2 1 0 0 -1 -1],[ 1 1 1 1 1 0 1],[ 2 3 1 2 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,0,0,0,1,2,0,2,2,1,3,0,1,1,1,0,1,2,1,1,-1] |
Phi over symmetry |
[-3,0,0,0,1,2,0,2,2,1,3,0,1,1,1,0,1,2,1,1,-1] |
Phi of -K |
[-2,-1,0,0,0,3,2,0,1,1,2,0,0,0,3,0,0,1,-1,1,3] |
Phi of K* |
[-3,0,0,0,1,2,1,1,3,3,2,0,0,0,0,1,0,1,0,1,2] |
Phi of -K* |
[-2,-1,0,0,0,3,-1,1,1,2,3,1,1,1,1,-1,0,0,0,2,2] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+t^2+t |
Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
Inner characteristic polynomial |
t^6+29t^4+31t^2+1 |
Outer characteristic polynomial |
t^7+43t^5+76t^3+8t |
Flat arrow polynomial |
12*K1**3 + 8*K1**2*K2 - 14*K1**2 - 6*K1*K2 - 4*K1*K3 - 6*K1 + 5*K2 + 6 |
2-strand cable arrow polynomial |
-320*K1**4*K2**2 + 480*K1**4*K2 - 2784*K1**4 + 128*K1**3*K2**3*K3 + 832*K1**3*K2*K3 - 512*K1**3*K3 - 768*K1**2*K2**4 + 1600*K1**2*K2**3 - 448*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 9440*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 1056*K1**2*K2*K4 + 11264*K1**2*K2 - 544*K1**2*K3**2 - 112*K1**2*K4**2 - 6956*K1**2 + 3328*K1*K2**3*K3 + 544*K1*K2**2*K3*K4 - 1952*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 576*K1*K2**2*K5 + 64*K1*K2*K3**3 - 320*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 10272*K1*K2*K3 - 96*K1*K2*K4*K5 + 1464*K1*K3*K4 + 160*K1*K4*K5 - 224*K2**6 - 320*K2**4*K3**2 - 64*K2**4*K4**2 + 288*K2**4*K4 - 2888*K2**4 + 320*K2**3*K3*K5 + 128*K2**3*K4*K6 - 64*K2**3*K6 - 2400*K2**2*K3**2 - 488*K2**2*K4**2 + 2544*K2**2*K4 - 112*K2**2*K5**2 - 48*K2**2*K6**2 - 4248*K2**2 - 64*K2*K3**2*K4 + 944*K2*K3*K5 + 240*K2*K4*K6 - 2752*K3**2 - 806*K4**2 - 92*K5**2 - 24*K6**2 + 5652 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}]] |
If K is slice |
False |