Min(phi) over symmetries of the knot is: [-3,0,0,1,1,1,0,2,1,2,3,0,1,1,1,1,1,1,-1,-1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.967'] |
Arrow polynomial of the knot is: -6*K1*K2 + 3*K1 - 4*K2**2 + 3*K3 + 2*K4 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.881', '6.967', '6.1179'] |
Outer characteristic polynomial of the knot is: t^7+38t^5+57t^3 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.967', '6.1032', '6.1134'] |
2-strand cable arrow polynomial of the knot is: -528*K1**4 + 224*K1**3*K3*K4 + 216*K1**2*K2 - 768*K1**2*K3**2 - 624*K1**2*K4**2 - 1220*K1**2 + 1160*K1*K2*K3 + 2512*K1*K3*K4 + 616*K1*K4*K5 - 24*K2**2*K4**2 + 192*K2**2*K4 - 662*K2**2 + 88*K2*K3*K5 + 40*K2*K4*K6 + 8*K2*K5*K7 - 48*K3**4 - 112*K3**2*K4**2 + 32*K3**2*K6 - 1396*K3**2 + 88*K3*K4*K7 - 48*K4**4 + 32*K4**2*K8 - 1220*K4**2 - 228*K5**2 - 18*K6**2 - 20*K7**2 - 4*K8**2 + 1710 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.967'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3634', 'vk6.3725', 'vk6.3916', 'vk6.4017', 'vk6.7056', 'vk6.7113', 'vk6.7288', 'vk6.7387', 'vk6.11390', 'vk6.12577', 'vk6.12688', 'vk6.19106', 'vk6.19153', 'vk6.19818', 'vk6.25715', 'vk6.25776', 'vk6.26257', 'vk6.26700', 'vk6.30990', 'vk6.31117', 'vk6.32174', 'vk6.37826', 'vk6.37883', 'vk6.44978', 'vk6.48270', 'vk6.48449', 'vk6.50023', 'vk6.50167', 'vk6.52147', 'vk6.63721', 'vk6.66199', 'vk6.66228'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U5U3O6O5U6U2U1U4 |
R3 orbit | {'O1O2O3O4U5U3O6O5U6U2U1U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U1U4U3U5O6O5U2U6 |
Gauss code of K* | O1O2O3O4U3U2U5U4O6O5U1U6 |
Gauss code of -K* | O1O2O3O4U5U4O6O5U1U6U3U2 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 -1 0 3 0 -1],[ 1 0 0 1 3 1 -1],[ 1 0 0 1 2 1 -1],[ 0 -1 -1 0 0 0 -1],[-3 -3 -2 0 0 -2 -1],[ 0 -1 -1 0 2 0 -1],[ 1 1 1 1 1 1 0]] |
Primitive based matrix | [[ 0 3 0 0 -1 -1 -1],[-3 0 0 -2 -1 -2 -3],[ 0 0 0 0 -1 -1 -1],[ 0 2 0 0 -1 -1 -1],[ 1 1 1 1 0 1 1],[ 1 2 1 1 -1 0 0],[ 1 3 1 1 -1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,0,0,1,1,1,0,2,1,2,3,0,1,1,1,1,1,1,-1,-1,0] |
Phi over symmetry | [-3,0,0,1,1,1,0,2,1,2,3,0,1,1,1,1,1,1,-1,-1,0] |
Phi of -K | [-1,-1,-1,0,0,3,-1,-1,0,0,3,0,0,0,1,0,0,2,0,1,3] |
Phi of K* | [-3,0,0,1,1,1,1,3,1,2,3,0,0,0,0,0,0,0,0,-1,-1] |
Phi of -K* | [-1,-1,-1,0,0,3,-1,0,1,1,2,1,1,1,1,1,1,3,0,0,2] |
Symmetry type of based matrix | c |
u-polynomial | -t^3+3t |
Normalized Jones-Krushkal polynomial | 9z+19 |
Enhanced Jones-Krushkal polynomial | -8w^3z+17w^2z+19w |
Inner characteristic polynomial | t^6+26t^4+21t^2 |
Outer characteristic polynomial | t^7+38t^5+57t^3 |
Flat arrow polynomial | -6*K1*K2 + 3*K1 - 4*K2**2 + 3*K3 + 2*K4 + 3 |
2-strand cable arrow polynomial | -528*K1**4 + 224*K1**3*K3*K4 + 216*K1**2*K2 - 768*K1**2*K3**2 - 624*K1**2*K4**2 - 1220*K1**2 + 1160*K1*K2*K3 + 2512*K1*K3*K4 + 616*K1*K4*K5 - 24*K2**2*K4**2 + 192*K2**2*K4 - 662*K2**2 + 88*K2*K3*K5 + 40*K2*K4*K6 + 8*K2*K5*K7 - 48*K3**4 - 112*K3**2*K4**2 + 32*K3**2*K6 - 1396*K3**2 + 88*K3*K4*K7 - 48*K4**4 + 32*K4**2*K8 - 1220*K4**2 - 228*K5**2 - 18*K6**2 - 20*K7**2 - 4*K8**2 + 1710 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{3, 6}, {2, 5}, {1, 4}]] |
If K is slice | False |