Gauss code |
O1O2O3O4U5U4O6O5U6U1U2U3 |
R3 orbit |
{'O1O2O3O4U5U4O6O5U6U1U2U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2U3U4U5O6O5U1U6 |
Gauss code of K* |
O1O2O3O4U2U3U4U5O6O5U1U6 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 2 1 0 -1],[ 2 0 1 2 1 2 -1],[ 0 -1 0 1 1 0 -1],[-2 -2 -1 0 1 -2 -1],[-1 -1 -1 -1 0 -1 -1],[ 0 -2 0 2 1 0 -1],[ 1 1 1 1 1 1 0]] |
Primitive based matrix |
[[ 0 2 1 0 -1 -2],[-2 0 1 -1 -1 -2],[-1 -1 0 -1 -1 -1],[ 0 1 1 0 -1 -1],[ 1 1 1 1 0 1],[ 2 2 1 1 -1 0]] |
If based matrix primitive |
False |
Phi of primitive based matrix |
[-2,-1,0,1,2,-1,1,1,2,1,1,1,1,1,-1] |
Phi over symmetry |
[-2,-1,0,1,2,-1,1,1,2,1,1,1,1,1,-1] |
Phi of -K |
[-2,-1,0,1,2,2,1,2,2,0,1,2,0,1,2] |
Phi of K* |
[-2,-1,0,1,2,2,1,2,2,0,1,2,0,1,2] |
Phi of -K* |
[-2,-1,0,1,2,-1,1,1,2,1,1,1,1,1,-1] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
-z-1 |
Enhanced Jones-Krushkal polynomial |
-16w^3z+15w^2z-w |
Inner characteristic polynomial |
t^5+13t^3+6t |
Outer characteristic polynomial |
t^6+23t^4+26t^2 |
Flat arrow polynomial |
8*K1**3 - 4*K1*K2 - 4*K1 + 1 |
2-strand cable arrow polynomial |
-2688*K1**2*K2**4 + 1792*K1**2*K2**3 - 3488*K1**2*K2**2 + 1888*K1**2*K2 - 608*K1**2 + 1664*K1*K2**3*K3 + 1760*K1*K2*K3 - 192*K2**6 + 128*K2**4*K4 - 640*K2**4 - 160*K2**2*K3**2 - 16*K2**2*K4**2 + 192*K2**2*K4 + 144*K2**2 - 160*K3**2 - 16*K4**2 + 398 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {5}, {1, 3}, {2}]] |
If K is slice |
True |