Gauss code |
O1O2O3O4U1U3O5U2O6U4U6U5 |
R3 orbit |
{'O1O2O3O4U1U3O5U2O6U4U6U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U6U1O6U3O5U2U4 |
Gauss code of K* |
O1O2O3U4U5U6U1O4O6U3O5U2 |
Gauss code of -K* |
O1O2O3U2O4U1O5O6U3U5U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 0 1 2 1],[ 3 0 2 1 3 2 1],[ 1 -2 0 0 2 2 1],[ 0 -1 0 0 1 1 1],[-1 -3 -2 -1 0 2 1],[-2 -2 -2 -1 -2 0 0],[-1 -1 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 0 -2 -1 -2 -2],[-1 0 0 -1 -1 -1 -1],[-1 2 1 0 -1 -2 -3],[ 0 1 1 1 0 0 -1],[ 1 2 1 2 0 0 -2],[ 3 2 1 3 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,0,2,1,2,2,1,1,1,1,1,2,3,0,1,2] |
Phi over symmetry |
[-3,-1,0,1,1,2,0,2,1,3,3,1,0,1,1,0,0,1,-1,-1,1] |
Phi of -K |
[-3,-1,0,1,1,2,0,2,1,3,3,1,0,1,1,0,0,1,-1,-1,1] |
Phi of K* |
[-2,-1,-1,0,1,3,-1,1,1,1,3,1,0,0,1,0,1,3,1,2,0] |
Phi of -K* |
[-3,-1,0,1,1,2,2,1,1,3,2,0,1,2,2,1,1,1,-1,0,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
z^2+22z+41 |
Enhanced Jones-Krushkal polynomial |
w^3z^2+22w^2z+41w |
Inner characteristic polynomial |
t^6+36t^4+12t^2+1 |
Outer characteristic polynomial |
t^7+52t^5+33t^3+4t |
Flat arrow polynomial |
-14*K1**2 - 2*K1*K2 + K1 + 7*K2 + K3 + 8 |
2-strand cable arrow polynomial |
-192*K1**6 - 192*K1**4*K2**2 + 1568*K1**4*K2 - 6112*K1**4 + 832*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1248*K1**3*K3 - 5856*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 320*K1**2*K2*K4 + 12792*K1**2*K2 - 1280*K1**2*K3**2 - 112*K1**2*K4**2 - 6868*K1**2 - 480*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 8792*K1*K2*K3 + 1440*K1*K3*K4 + 72*K1*K4*K5 - 344*K2**4 - 96*K2**2*K3**2 - 8*K2**2*K4**2 + 792*K2**2*K4 - 6190*K2**2 + 128*K2*K3*K5 + 8*K2*K4*K6 - 2880*K3**2 - 606*K4**2 - 52*K5**2 - 2*K6**2 + 6348 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |