Gauss code |
O1O2O3O4U1U3O5U2O6U5U4U6 |
R3 orbit |
{'O1O2O3O4U1U3O5U2O6U5U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U1U6O5U3O6U2U4 |
Gauss code of K* |
O1O2O3U4U5U6U2O4O6U1O5U3 |
Gauss code of -K* |
O1O2O3U1O4U3O5O6U2U5U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 0 2 0 2],[ 3 0 2 1 3 1 1],[ 1 -2 0 0 3 1 2],[ 0 -1 0 0 1 0 1],[-2 -3 -3 -1 0 0 2],[ 0 -1 -1 0 0 0 1],[-2 -1 -2 -1 -2 -1 0]] |
Primitive based matrix |
[[ 0 2 2 0 0 -1 -3],[-2 0 2 0 -1 -3 -3],[-2 -2 0 -1 -1 -2 -1],[ 0 0 1 0 0 -1 -1],[ 0 1 1 0 0 0 -1],[ 1 3 2 1 0 0 -2],[ 3 3 1 1 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,0,1,3,-2,0,1,3,3,1,1,2,1,0,1,1,0,1,2] |
Phi over symmetry |
[-3,-1,0,0,2,2,0,2,2,2,4,0,1,0,1,0,2,1,1,1,-2] |
Phi of -K |
[-3,-1,0,0,2,2,0,2,2,2,4,0,1,0,1,0,2,1,1,1,-2] |
Phi of K* |
[-2,-2,0,0,1,3,-2,1,1,1,4,1,2,0,2,0,1,2,0,2,0] |
Phi of -K* |
[-3,-1,0,0,2,2,2,1,1,1,3,0,1,2,3,0,1,1,1,0,-2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
2z^2+19z+31 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+19w^2z+31w |
Inner characteristic polynomial |
t^6+37t^4+11t^2 |
Outer characteristic polynomial |
t^7+55t^5+43t^3+4t |
Flat arrow polynomial |
8*K1**3 - 8*K1**2 - 6*K1*K2 - 3*K1 + 4*K2 + K3 + 5 |
2-strand cable arrow polynomial |
160*K1**4*K2 - 1120*K1**4 + 128*K1**3*K2*K3 - 832*K1**3*K3 + 544*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 - 3328*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 224*K1**2*K2*K4 + 7048*K1**2*K2 - 544*K1**2*K3**2 - 5680*K1**2 + 416*K1*K2**3*K3 + 64*K1*K2**2*K3*K4 - 1184*K1*K2**2*K3 - 128*K1*K2**2*K5 + 32*K1*K2*K3**3 - 224*K1*K2*K3*K4 + 6024*K1*K2*K3 + 856*K1*K3*K4 + 64*K1*K4*K5 - 64*K2**6 + 96*K2**4*K4 - 976*K2**4 - 32*K2**3*K6 - 544*K2**2*K3**2 - 40*K2**2*K4**2 + 1112*K2**2*K4 - 3686*K2**2 - 32*K2*K3**2*K4 + 336*K2*K3*K5 + 24*K2*K4*K6 - 1904*K3**2 - 372*K4**2 - 56*K5**2 - 2*K6**2 + 3938 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}]] |
If K is slice |
False |