Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,-1,2,2,3,3,2,1,1,0,0,1,1,0,0,1] |
Flat knots (up to 7 crossings) with same phi are :['6.979'] |
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.217', '6.219', '6.304', '6.349', '6.390', '6.400', '6.416', '6.515', '6.518', '6.530', '6.582', '6.616', '6.629', '6.641', '6.645', '6.702', '6.710', '6.715', '6.729', '6.733', '6.734', '6.802', '6.840', '6.845', '6.854', '6.860', '6.900', '6.905', '6.921', '6.924', '6.979', '6.980', '6.996', '6.1044', '6.1067', '6.1086', '6.1100', '6.1139', '6.1145', '6.1149', '6.1167', '6.1169', '6.1183', '6.1314'] |
Outer characteristic polynomial of the knot is: t^7+50t^5+72t^3 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.979'] |
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 64*K1**4*K2 - 992*K1**4 + 32*K1**3*K2*K3 + 32*K1**3*K3*K4 - 336*K1**2*K2**2 + 1240*K1**2*K2 - 448*K1**2*K3**2 - 128*K1**2*K4**2 - 1020*K1**2 + 1592*K1*K2*K3 + 888*K1*K3*K4 + 88*K1*K4*K5 - 8*K2**4 - 16*K2**2*K3**2 - 8*K2**2*K4**2 + 48*K2**2*K4 - 966*K2**2 + 32*K2*K3*K5 + 8*K2*K4*K6 - 936*K3**2 - 350*K4**2 - 28*K5**2 - 2*K6**2 + 1276 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.979'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11536', 'vk6.11868', 'vk6.12885', 'vk6.13193', 'vk6.20342', 'vk6.21685', 'vk6.27646', 'vk6.29192', 'vk6.31317', 'vk6.31714', 'vk6.32475', 'vk6.32892', 'vk6.39072', 'vk6.41330', 'vk6.45828', 'vk6.47499', 'vk6.52309', 'vk6.52572', 'vk6.53153', 'vk6.53455', 'vk6.57213', 'vk6.58436', 'vk6.61827', 'vk6.62960', 'vk6.63818', 'vk6.63951', 'vk6.64263', 'vk6.64460', 'vk6.66822', 'vk6.67692', 'vk6.69462', 'vk6.70186'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U1U3O5U4O6U2U6U5 |
R3 orbit | {'O1O2O3O4U1U3O5U4O6U2U6U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U6U3O6U1O5U2U4 |
Gauss code of K* | O1O2O3U4U1U5U6O4O5U3O6U2 |
Gauss code of -K* | O1O2O3U2O4U1O5O6U4U5U3U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -1 0 1 2 1],[ 3 0 3 1 2 2 1],[ 1 -3 0 -1 1 3 1],[ 0 -1 1 0 1 1 0],[-1 -2 -1 -1 0 1 0],[-2 -2 -3 -1 -1 0 0],[-1 -1 -1 0 0 0 0]] |
Primitive based matrix | [[ 0 2 1 1 0 -1 -3],[-2 0 0 -1 -1 -3 -2],[-1 0 0 0 0 -1 -1],[-1 1 0 0 -1 -1 -2],[ 0 1 0 1 0 1 -1],[ 1 3 1 1 -1 0 -3],[ 3 2 1 2 1 3 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,0,1,3,0,1,1,3,2,0,0,1,1,1,1,2,-1,1,3] |
Phi over symmetry | [-3,-1,0,1,1,2,-1,2,2,3,3,2,1,1,0,0,1,1,0,0,1] |
Phi of -K | [-3,-1,0,1,1,2,-1,2,2,3,3,2,1,1,0,0,1,1,0,0,1] |
Phi of K* | [-2,-1,-1,0,1,3,0,1,1,0,3,0,0,1,2,1,1,3,2,2,-1] |
Phi of -K* | [-3,-1,0,1,1,2,3,1,1,2,2,-1,1,1,3,0,1,1,0,0,1] |
Symmetry type of based matrix | c |
u-polynomial | t^3-t^2-t |
Normalized Jones-Krushkal polynomial | 11z+23 |
Enhanced Jones-Krushkal polynomial | -4w^3z+15w^2z+23w |
Inner characteristic polynomial | t^6+34t^4+19t^2 |
Outer characteristic polynomial | t^7+50t^5+72t^3 |
Flat arrow polynomial | -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2 |
2-strand cable arrow polynomial | -64*K1**6 + 64*K1**4*K2 - 992*K1**4 + 32*K1**3*K2*K3 + 32*K1**3*K3*K4 - 336*K1**2*K2**2 + 1240*K1**2*K2 - 448*K1**2*K3**2 - 128*K1**2*K4**2 - 1020*K1**2 + 1592*K1*K2*K3 + 888*K1*K3*K4 + 88*K1*K4*K5 - 8*K2**4 - 16*K2**2*K3**2 - 8*K2**2*K4**2 + 48*K2**2*K4 - 966*K2**2 + 32*K2*K3*K5 + 8*K2*K4*K6 - 936*K3**2 - 350*K4**2 - 28*K5**2 - 2*K6**2 + 1276 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {4}, {2, 3}, {1}]] |
If K is slice | False |