Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.980

Min(phi) over symmetries of the knot is: [-3,0,0,0,1,2,0,2,2,2,4,-1,1,1,0,1,2,1,0,2,0]
Flat knots (up to 7 crossings) with same phi are :['6.980']
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.217', '6.219', '6.304', '6.349', '6.390', '6.400', '6.416', '6.515', '6.518', '6.530', '6.582', '6.616', '6.629', '6.641', '6.645', '6.702', '6.710', '6.715', '6.729', '6.733', '6.734', '6.802', '6.840', '6.845', '6.854', '6.860', '6.900', '6.905', '6.921', '6.924', '6.979', '6.980', '6.996', '6.1044', '6.1067', '6.1086', '6.1100', '6.1139', '6.1145', '6.1149', '6.1167', '6.1169', '6.1183', '6.1314']
Outer characteristic polynomial of the knot is: t^7+41t^5+125t^3+12t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.980']
2-strand cable arrow polynomial of the knot is: -16*K1**4 + 32*K1**3*K2*K3 - 1168*K1**2*K2**2 + 1040*K1**2*K2 - 672*K1**2*K3**2 - 2432*K1**2 + 384*K1*K2**3*K3 - 192*K1*K2**2*K3 - 96*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 4672*K1*K2*K3 - 64*K1*K3**2*K5 + 816*K1*K3*K4 + 24*K1*K4*K5 + 48*K1*K5*K6 - 312*K2**4 - 624*K2**2*K3**2 - 8*K2**2*K4**2 + 248*K2**2*K4 - 2018*K2**2 + 584*K2*K3*K5 + 16*K2*K4*K6 - 16*K3**4 + 88*K3**2*K6 - 2180*K3**2 - 266*K4**2 - 164*K5**2 - 54*K6**2 + 2392
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.980']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71482', 'vk6.71485', 'vk6.71541', 'vk6.71546', 'vk6.72018', 'vk6.72019', 'vk6.72069', 'vk6.72072', 'vk6.72529', 'vk6.72536', 'vk6.72636', 'vk6.72658', 'vk6.72923', 'vk6.72960', 'vk6.73112', 'vk6.73136', 'vk6.73650', 'vk6.73686', 'vk6.73688', 'vk6.77106', 'vk6.77110', 'vk6.77160', 'vk6.77163', 'vk6.77455', 'vk6.77460', 'vk6.77944', 'vk6.77962', 'vk6.78584', 'vk6.81423', 'vk6.86895', 'vk6.87247', 'vk6.89356']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U3O5U4O6U5U2U6
R3 orbit {'O1O2O3O4U1U3O5U4O6U5U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U3U6O5U1O6U2U4
Gauss code of K* O1O2O3U4U2U5U6O4O5U1O6U3
Gauss code of -K* O1O2O3U1O4U3O5O6U4U5U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 0 1 0 2],[ 3 0 3 1 2 1 1],[ 0 -3 0 -1 0 1 2],[ 0 -1 1 0 1 1 0],[-1 -2 0 -1 0 1 1],[ 0 -1 -1 -1 -1 0 1],[-2 -1 -2 0 -1 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 0 -3],[-2 0 -1 0 -1 -2 -1],[-1 1 0 -1 1 0 -2],[ 0 0 1 0 1 1 -1],[ 0 1 -1 -1 0 -1 -1],[ 0 2 0 -1 1 0 -3],[ 3 1 2 1 1 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,0,3,1,0,1,2,1,1,-1,0,2,-1,-1,1,1,1,3]
Phi over symmetry [-3,0,0,0,1,2,0,2,2,2,4,-1,1,1,0,1,2,1,0,2,0]
Phi of -K [-3,0,0,0,1,2,0,2,2,2,4,-1,1,1,0,1,2,1,0,2,0]
Phi of K* [-2,-1,0,0,0,3,0,0,1,2,4,1,2,0,2,1,-1,0,-1,2,2]
Phi of -K* [-3,0,0,0,1,2,1,1,3,2,1,-1,-1,-1,1,1,1,0,0,2,1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 4z^2+21z+27
Enhanced Jones-Krushkal polynomial 4w^3z^2-4w^3z+25w^2z+27w
Inner characteristic polynomial t^6+27t^4+32t^2
Outer characteristic polynomial t^7+41t^5+125t^3+12t
Flat arrow polynomial -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
2-strand cable arrow polynomial -16*K1**4 + 32*K1**3*K2*K3 - 1168*K1**2*K2**2 + 1040*K1**2*K2 - 672*K1**2*K3**2 - 2432*K1**2 + 384*K1*K2**3*K3 - 192*K1*K2**2*K3 - 96*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 4672*K1*K2*K3 - 64*K1*K3**2*K5 + 816*K1*K3*K4 + 24*K1*K4*K5 + 48*K1*K5*K6 - 312*K2**4 - 624*K2**2*K3**2 - 8*K2**2*K4**2 + 248*K2**2*K4 - 2018*K2**2 + 584*K2*K3*K5 + 16*K2*K4*K6 - 16*K3**4 + 88*K3**2*K6 - 2180*K3**2 - 266*K4**2 - 164*K5**2 - 54*K6**2 + 2392
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact