Gauss code |
O1O2O3O4U1U4O5U2O6U5U6U3 |
R3 orbit |
{'O1O2O3O4U1U4O5U2O6U5U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2U5U6O5U3O6U1U4 |
Gauss code of K* |
O1O2O3U4U5U3U6O4O6U1O5U2 |
Gauss code of -K* |
O1O2O3U2O4U3O5O6U5U1U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 2 1 0 1],[ 3 0 2 3 1 1 0],[ 1 -2 0 2 0 1 1],[-2 -3 -2 0 0 -1 1],[-1 -1 0 0 0 0 0],[ 0 -1 -1 1 0 0 1],[-1 0 -1 -1 0 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 1 0 -1 -2 -3],[-1 -1 0 0 -1 -1 0],[-1 0 0 0 0 0 -1],[ 0 1 1 0 0 -1 -1],[ 1 2 1 0 1 0 -2],[ 3 3 0 1 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,-1,0,1,2,3,0,1,1,0,0,0,1,1,1,2] |
Phi over symmetry |
[-3,-1,0,1,1,2,0,2,3,4,2,0,2,1,1,1,0,1,0,1,2] |
Phi of -K |
[-3,-1,0,1,1,2,0,2,3,4,2,0,2,1,1,1,0,1,0,1,2] |
Phi of K* |
[-2,-1,-1,0,1,3,1,2,1,1,2,0,1,2,3,0,1,4,0,2,0] |
Phi of -K* |
[-3,-1,0,1,1,2,2,1,0,1,3,1,1,0,2,1,0,1,0,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
3z^2+24z+37 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+24w^2z+37w |
Inner characteristic polynomial |
t^6+24t^4+24t^2 |
Outer characteristic polynomial |
t^7+40t^5+59t^3+7t |
Flat arrow polynomial |
8*K1**3 - 10*K1**2 - 6*K1*K2 - 3*K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial |
256*K1**4*K2**3 - 1024*K1**4*K2**2 + 3264*K1**4*K2 - 4208*K1**4 + 128*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1248*K1**3*K3 - 448*K1**2*K2**4 + 2496*K1**2*K2**3 - 8400*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 352*K1**2*K2*K4 + 11856*K1**2*K2 - 496*K1**2*K3**2 - 64*K1**2*K3*K5 - 96*K1**2*K4**2 - 7280*K1**2 + 384*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 2272*K1*K2**2*K3 - 160*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 8744*K1*K2*K3 - 32*K1*K2*K4*K5 + 1264*K1*K3*K4 + 128*K1*K4*K5 + 8*K1*K5*K6 - 64*K2**6 + 96*K2**4*K4 - 1544*K2**4 - 32*K2**3*K6 - 272*K2**2*K3**2 - 40*K2**2*K4**2 + 1912*K2**2*K4 - 5458*K2**2 + 352*K2*K3*K5 + 32*K2*K4*K6 - 2416*K3**2 - 642*K4**2 - 80*K5**2 - 6*K6**2 + 5744 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |