Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.994

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,0,1,1,3,2,1,1,1,1,-1,0,0,-1,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.994']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.2', '6.303', '6.338', '6.381', '6.432', '6.468', '6.558', '6.583', '6.597', '6.607', '6.634', '6.637', '6.643', '6.654', '6.667', '6.701', '6.709', '6.712', '6.718', '6.728', '6.767', '6.801', '6.825', '6.827', '6.974', '6.994', '6.1042', '6.1061', '6.1069', '6.1181', '6.1271', '6.1286', '6.1287', '6.1289', '6.1297', '6.1337', '6.1355']
Outer characteristic polynomial of the knot is: t^7+60t^5+72t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.994']
2-strand cable arrow polynomial of the knot is: -208*K1**4 - 32*K1**3*K3 + 512*K1**2*K2**5 - 1280*K1**2*K2**4 + 3424*K1**2*K2**3 + 32*K1**2*K2**2*K4 - 5872*K1**2*K2**2 - 224*K1**2*K2*K4 + 4960*K1**2*K2 - 16*K1**2*K3**2 - 3452*K1**2 - 1024*K1*K2**4*K3 + 1568*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 1056*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3472*K1*K2*K3 + 272*K1*K3*K4 - 864*K2**6 + 864*K2**4*K4 - 2104*K2**4 - 480*K2**2*K3**2 - 88*K2**2*K4**2 + 968*K2**2*K4 - 776*K2**2 + 64*K2*K3*K5 - 724*K3**2 - 162*K4**2 + 2160
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.994']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71623', 'vk6.71786', 'vk6.72208', 'vk6.72352', 'vk6.73375', 'vk6.73536', 'vk6.75284', 'vk6.75549', 'vk6.77241', 'vk6.77323', 'vk6.77573', 'vk6.77682', 'vk6.78271', 'vk6.78519', 'vk6.80083', 'vk6.80231', 'vk6.81115', 'vk6.81171', 'vk6.81192', 'vk6.81239', 'vk6.81338', 'vk6.81526', 'vk6.82009', 'vk6.82419', 'vk6.82740', 'vk6.85449', 'vk6.86345', 'vk6.86928', 'vk6.87150', 'vk6.88092', 'vk6.88655', 'vk6.88761']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U5O6U4O5U2U3U6
R3 orbit {'O1O2O3O4U1U5O6U4O5U2U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U2U3O6U1O5U6U4
Gauss code of K* O1O2O3U4U1U2U5O4O6U3O5U6
Gauss code of -K* O1O2O3U4O5U1O4O6U5U2U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 1 1 0 2],[ 3 0 2 3 1 2 3],[ 1 -2 0 1 1 0 2],[-1 -3 -1 0 1 -2 1],[-1 -1 -1 -1 0 -1 0],[ 0 -2 0 2 1 0 2],[-2 -3 -2 -1 0 -2 0]]
Primitive based matrix [[ 0 2 1 1 0 -1 -3],[-2 0 0 -1 -2 -2 -3],[-1 0 0 -1 -1 -1 -1],[-1 1 1 0 -2 -1 -3],[ 0 2 1 2 0 0 -2],[ 1 2 1 1 0 0 -2],[ 3 3 1 3 2 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,1,3,0,1,2,2,3,1,1,1,1,2,1,3,0,2,2]
Phi over symmetry [-3,-1,0,1,1,2,0,1,1,3,2,1,1,1,1,-1,0,0,-1,0,1]
Phi of -K [-3,-1,0,1,1,2,0,1,1,3,2,1,1,1,1,-1,0,0,-1,0,1]
Phi of K* [-2,-1,-1,0,1,3,0,1,0,1,2,1,-1,1,1,0,1,3,1,1,0]
Phi of -K* [-3,-1,0,1,1,2,2,2,1,3,3,0,1,1,2,1,2,2,-1,0,1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 4z^2+17z+19
Enhanced Jones-Krushkal polynomial -4w^4z^2+8w^3z^2-4w^3z+21w^2z+19w
Inner characteristic polynomial t^6+44t^4+23t^2+1
Outer characteristic polynomial t^7+60t^5+72t^3+8t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
2-strand cable arrow polynomial -208*K1**4 - 32*K1**3*K3 + 512*K1**2*K2**5 - 1280*K1**2*K2**4 + 3424*K1**2*K2**3 + 32*K1**2*K2**2*K4 - 5872*K1**2*K2**2 - 224*K1**2*K2*K4 + 4960*K1**2*K2 - 16*K1**2*K3**2 - 3452*K1**2 - 1024*K1*K2**4*K3 + 1568*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 1056*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3472*K1*K2*K3 + 272*K1*K3*K4 - 864*K2**6 + 864*K2**4*K4 - 2104*K2**4 - 480*K2**2*K3**2 - 88*K2**2*K4**2 + 968*K2**2*K4 - 776*K2**2 + 64*K2*K3*K5 - 724*K3**2 - 162*K4**2 + 2160
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact