Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.995

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,0,1,2,3,2,1,1,1,1,0,0,0,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.995']
Arrow polynomial of the knot is: -6*K1**2 - 6*K1*K2 + 3*K1 + 3*K2 + 3*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.458', '6.601', '6.611', '6.995', '6.1026', '6.1037']
Outer characteristic polynomial of the knot is: t^7+50t^5+27t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.995']
2-strand cable arrow polynomial of the knot is: -176*K1**4 + 256*K1**3*K2*K3 + 32*K1**3*K3*K4 - 288*K1**3*K3 - 64*K1**2*K2**2*K3**2 - 1920*K1**2*K2**2 + 96*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 288*K1**2*K2*K4 + 2896*K1**2*K2 - 480*K1**2*K3**2 - 32*K1**2*K3*K5 - 16*K1**2*K4**2 - 2696*K1**2 + 384*K1*K2**3*K3 - 448*K1*K2**2*K3 - 192*K1*K2**2*K5 + 64*K1*K2*K3**3 - 160*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 3704*K1*K2*K3 + 664*K1*K3*K4 + 48*K1*K4*K5 - 328*K2**4 - 512*K2**2*K3**2 - 56*K2**2*K4**2 + 608*K2**2*K4 - 1962*K2**2 + 352*K2*K3*K5 + 40*K2*K4*K6 - 16*K3**4 + 8*K3**2*K6 - 1180*K3**2 - 266*K4**2 - 36*K5**2 - 6*K6**2 + 1968
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.995']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71644', 'vk6.71655', 'vk6.71658', 'vk6.71666', 'vk6.71821', 'vk6.71831', 'vk6.72245', 'vk6.72257', 'vk6.72260', 'vk6.72269', 'vk6.72373', 'vk6.72380', 'vk6.77260', 'vk6.77273', 'vk6.77356', 'vk6.77370', 'vk6.77372', 'vk6.77376', 'vk6.77608', 'vk6.77618', 'vk6.77700', 'vk6.77712', 'vk6.77715', 'vk6.77719', 'vk6.81407', 'vk6.81414', 'vk6.81441', 'vk6.81695', 'vk6.82450', 'vk6.82455', 'vk6.84424', 'vk6.84436', 'vk6.84439', 'vk6.86956', 'vk6.87165', 'vk6.87169', 'vk6.87774', 'vk6.87998', 'vk6.88119', 'vk6.89636']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U5O6U4O5U2U6U3
R3 orbit {'O1O2O3O4U1U5U3O6O5U2U4U6', 'O1O2O3O4U1U5O6U4O5U2U6U3'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U2U5U3O6U1O5U6U4
Gauss code of K* O1O2O3U4U1U3U5O4O6U2O5U6
Gauss code of -K* O1O2O3U4O5U2O4O6U5U1U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 2 1 0 1],[ 3 0 2 3 1 2 2],[ 1 -2 0 2 1 0 1],[-2 -3 -2 0 0 -2 0],[-1 -1 -1 0 0 -1 0],[ 0 -2 0 2 1 0 1],[-1 -2 -1 0 0 -1 0]]
Primitive based matrix [[ 0 2 1 1 0 -1 -3],[-2 0 0 0 -2 -2 -3],[-1 0 0 0 -1 -1 -1],[-1 0 0 0 -1 -1 -2],[ 0 2 1 1 0 0 -2],[ 1 2 1 1 0 0 -2],[ 3 3 1 2 2 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,1,3,0,0,2,2,3,0,1,1,1,1,1,2,0,2,2]
Phi over symmetry [-3,-1,0,1,1,2,0,1,2,3,2,1,1,1,1,0,0,0,0,1,1]
Phi of -K [-3,-1,0,1,1,2,0,1,2,3,2,1,1,1,1,0,0,0,0,1,1]
Phi of K* [-2,-1,-1,0,1,3,1,1,0,1,2,0,0,1,2,0,1,3,1,1,0]
Phi of -K* [-3,-1,0,1,1,2,2,2,1,2,3,0,1,1,2,1,1,2,0,0,0]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial 3w^3z^2+16w^2z+21w
Inner characteristic polynomial t^6+34t^4+6t^2
Outer characteristic polynomial t^7+50t^5+27t^3+3t
Flat arrow polynomial -6*K1**2 - 6*K1*K2 + 3*K1 + 3*K2 + 3*K3 + 4
2-strand cable arrow polynomial -176*K1**4 + 256*K1**3*K2*K3 + 32*K1**3*K3*K4 - 288*K1**3*K3 - 64*K1**2*K2**2*K3**2 - 1920*K1**2*K2**2 + 96*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 288*K1**2*K2*K4 + 2896*K1**2*K2 - 480*K1**2*K3**2 - 32*K1**2*K3*K5 - 16*K1**2*K4**2 - 2696*K1**2 + 384*K1*K2**3*K3 - 448*K1*K2**2*K3 - 192*K1*K2**2*K5 + 64*K1*K2*K3**3 - 160*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 3704*K1*K2*K3 + 664*K1*K3*K4 + 48*K1*K4*K5 - 328*K2**4 - 512*K2**2*K3**2 - 56*K2**2*K4**2 + 608*K2**2*K4 - 1962*K2**2 + 352*K2*K3*K5 + 40*K2*K4*K6 - 16*K3**4 + 8*K3**2*K6 - 1180*K3**2 - 266*K4**2 - 36*K5**2 - 6*K6**2 + 1968
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {3}, {1, 2}]]
If K is slice False
Contact